메뉴 건너뛰기




Volumn 9, Issue 2, 2010, Pages 87-104

A hybrid support vector regression approach for rainfall forecasting using particle swarm optimization and projection pursuit technology

Author keywords

Particle swarm optimization; Projection pursuit technology; Rainfall forecasting; Support vector regression

Indexed keywords

PROJECTION PURSUIT TECHNOLOGY; PROJECTION PURSUITS; RAINFALL FORECASTING; SUPPORT VECTOR REGRESSIONS;

EID: 77953513773     PISSN: 14690268     EISSN: None     Source Type: Journal    
DOI: 10.1142/S1469026810002793     Document Type: Article
Times cited : (45)

References (28)
  • 1
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • K. C. Luk, J. E. Ball and A. Sharma, An application of artificial neural networks for rainfall forecasting, Math. Comput. Model. 33 (2001) 683-693.
    • (2001) Math. Comput. Model. , vol.33 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 2
    • 44949191403 scopus 로고    scopus 로고
    • Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network
    • M. Nasseri, K. Asghari and M. J. Abedini, Optimized scenario for rainfall forecasting using genetic algorithm coupled with artificial neural network, Expert Syst. Appl. 35 (2008) 1414-1421.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1414-1421
    • Nasseri, M.1    Asghari, K.2    Abedini, M.J.3
  • 3
    • 20844462859 scopus 로고    scopus 로고
    • Application of an artificial neural network to typhoon rainfall forecasting
    • G. F. Lin and L. H. Chen, Application of an artificial neural network to typhoon rainfall forecasting, Hydrol. Processes 19 (2005) 1825-1837.
    • (2005) Hydrol. Processes , vol.19 , pp. 1825-1837
    • Lin, G.F.1    Chen, L.H.2
  • 4
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • G. F. Lin and L. H. Chen, A non-linear rainfall-runoff model using radial basis function network, J. Hydrol. 289 (2004) 1-8.
    • (2004) J. Hydrol. , vol.289 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 5
    • 0037255890 scopus 로고    scopus 로고
    • Three improved neural network models for air quality forecasting
    • W. Wang, Z. Xu and J. W. Lu, Three improved neural network models for air quality forecasting, Eng. Comput. 20 (2003) 192-210.
    • (2003) Eng. Comput. , vol.20 , pp. 192-210
    • Wang, W.1    Xu, Z.2    Lu, J.W.3
  • 6
    • 69849087028 scopus 로고    scopus 로고
    • A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network
    • J. S. Wu, A novel nonparametric regression ensemble for rainfall forecasting using particle swarm optimization technique coupled with artificial neural network, Lect. Note Comput. Sci. 5553 (2009) 49-58.
    • (2009) Lect. Note Comput. Sci. , vol.5553 , pp. 49-58
    • Wu, J.S.1
  • 7
    • 43049181654 scopus 로고    scopus 로고
    • Rainfall forecasting by technological machine learning models
    • W. C. Hong, Rainfall forecasting by technological machine learning models, Appl. Math. Comput. 200 (2008) 41-57.
    • (2008) Appl. Math. Comput. , vol.200 , pp. 41-57
    • Hong, W.C.1
  • 8
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R. P. Lippman, An introduction to computing with neural nets, IEEE ASSP Mag. 4 (1989) 4-22.
    • (1989) IEEE ASSP Mag , vol.4 , pp. 4-22
    • Lippman, R.P.1
  • 9
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural network in hydrology I: Preliminary concepts
    • R. S. Govindaraju, Artificial neural network in hydrology, I: Preliminary concepts, J. Hydrol. Eng. 5 (2000) 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
    • Govindaraju, R.S.1
  • 10
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural network in hydrology, II: Hydrological applications
    • R. S. Govindaraju, Artificial neural network in hydrology, II: Hydrological applications, J. Hydrol. Eng. 5 (2000) 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 124-137
    • Govindaraju, R.S.1
  • 11
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • K. C. Luk, J. E. Ball and A. Sharma, A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting, J. Hydrol. 227 (2000) 56-65.
    • (2000) J. Hydrol. , vol.227 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 12
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the S̈ao Paulo region
    • M. C. V. Ramirez, H. F. C. Velhob and N. J. Ferreira, Artificial neural network technique for rainfall forecasting applied to the S̈ao Paulo region, J. Hydrol. 301 (2005) 146-162.
    • (2005) J. Hydrol. , vol.301 , pp. 146-162
    • Ramirez, M.C.V.1    Velhob, H.F.C.2    Ferreira, N.J.3
  • 13
    • 57649125199 scopus 로고    scopus 로고
    • A novel nonlinear ensemble rainfall forecasting model incorporating linear and nonlinear regression, in Natural Computation
    • eds. M. Z. Guo, L. Zhao and L. P. Wang (Los Alamitos, CA)
    • J. S. Wu, A novel nonlinear ensemble rainfall forecasting model incorporating linear and nonlinear regression, in Natural Computation, Proceedings of the 4th International Conference on Natural Computation, eds. M. Z. Guo, L. Zhao and L. P. Wang (Los Alamitos, CA, 2008), pp. 34-38.
    • (2008) Proceedings of the 4th International Conference on Natural Computation , pp. 34-38
    • Wu, J.S.1
  • 15
    • 0036825901 scopus 로고    scopus 로고
    • Modified support vector machines in financial time series forecasting
    • DOI 10.1016/S0925-2312(01)00676-2, PII S0925231201006762
    • F. E. H. Tay and L. Cao, Modified support vector machines in financial time series forecasting, Neurocomput. 48 (2002) 847-861. (Pubitemid 36221530)
    • (2002) Neurocomputing , vol.48 , pp. 847-861
    • Tay, F.E.H.1    Cao, L.J.2
  • 16
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • eds. M. Mozer, M. Jordan and T. Petsche, MIT, Cambridge, MA
    • V. Vapnik, S. Golowich and A. Smola, Support vector method for function approximation, regression estimation and signal processing, in Advance in Neural Information Processing System, eds. M. Mozer, M. Jordan and T. Petsche (MIT, Cambridge, MA, 1997), pp. 281-287.
    • (1997) Advance in Neural Information Processing System , pp. 281-287
    • Vapnik, V.1    Golowich, S.2    Smola, A.3
  • 17
    • 0036738840 scopus 로고    scopus 로고
    • Efficient tuning of SVM hyper-parameters using radius/margin bound and iterative algorithms
    • S. S. Keerthi, Efficient tuning of SVM hyper-parameters using radius/margin bound and iterative algorithms, IEEE Tran. Neural Network 13 (2000) 1225-1229.
    • (2000) IEEE Tran. Neural Network , vol.13 , pp. 1225-1229
    • Keerthi, S.S.1
  • 20
    • 33748695973 scopus 로고    scopus 로고
    • Support vector regression with genetic algorithms in forecasting tourism demand
    • K. Y. Chen and C. H. Wang, Support vector regression with genetic algorithms in forecasting tourism demand, Tourism Manag. Vol.28, pp. 215-226.
    • Tourism Manag , vol.28 , pp. 215-226
    • Chen, K.Y.1    Wang, C.H.2
  • 21
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • S. W. Lin, K. C. Ying, S. C. Chen and Z. J. Lee, Particle swarm optimization for parameter determination and feature selection of support vector machines, Expert Syst. Appl. 35 (2008) 1817-1824.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.C.3    Lee, Z.J.4
  • 22
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • J. H. Friedman and J. W. Turkey, A projection pursuit algorithm for exploratory data analysis, IEEE Trans. Comput. 23 (1974) 881-889.
    • (1974) IEEE Trans. Comput. , vol.23 , pp. 881-889
    • Friedman, J.H.1    Turkey, J.W.2
  • 23
    • 38749110363 scopus 로고    scopus 로고
    • A projection pursuit algorithm to classify individuals using f-MRI data: Application to schizophrenia
    • O. Demirci, P. C. Vincent and V. D. Calhoun, A projection pursuit algorithm to classify individuals using f-MRI data: Application to schizophrenia, NeuroImage 39 (2008) 1774-1782.
    • (2008) NeuroImage , vol.39 , pp. 1774-1782
    • Demirci, O.1    Vincent, P.C.2    Calhoun, V.D.3
  • 24
    • 0032074994 scopus 로고    scopus 로고
    • Multimodality exploration by an unsupervised projection pursuit neural network
    • D. Yocheved and I. Nathan, Multimodality exploration by an unsupervised projection pursuit neural network, IEEE Tran. Neural Network 9 (1998) 464-472.
    • (1998) IEEE Tran. Neural Network , vol.9 , pp. 464-472
    • Yocheved, D.1    Nathan, I.2
  • 25
    • 0000263797 scopus 로고
    • Projection pursuit
    • P. J. Huber, Projection pursuit, Ann. Statist. 13 (1985) 435-475.
    • (1985) Ann. Statist. , vol.13 , pp. 435-475
    • Huber, P.J.1
  • 27
    • 77953498462 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • K. Hornik, M. Stinchcombe and H. White, Approximation by superpositions of a sigmoidal function, Neural Networks 2 (1989) 336-359.
    • (1989) Neural Networks , vol.2 , pp. 336-359
    • Hornik, K.1    Stinchcombe, M.2    White, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.