-
1
-
-
34249753618
-
Support-vector network
-
C. Cortes and V. Yapnik, Support-vector network. Machine Learning 20, no.3, pp.273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Yapnik, V.2
-
2
-
-
0032095724
-
Support vector machines for 3D object recognition
-
M. Pontil and A. A erri. Support vector machines for 3D object recognition, IEEE Trans, on Pattern Analysis and Machine Intelligence 20, no.6, pp.637-646, 1998. (Pubitemid 128744848)
-
(1998)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.20
, Issue.6
, pp. 637-646
-
-
Pontil, M.1
Verri, A.2
-
3
-
-
0032594950
-
Support, vector machines for spam categorization
-
H. Drucker, D. Wu and Y. Yapnik, Support, vector machines for spam categorization, IEEE Trans, on Neural Networks 10, no.5, pp.1048-1054, 1999.
-
(1999)
IEEE Trans, on Neural Networks
, vol.10
, Issue.5
, pp. 1048-1054
-
-
Drucker, H.1
Wu, D.2
Yapnik, Y.3
-
4
-
-
84905403254
-
Face recognition by support vector machines
-
G. Guo, S. Z. Li and K. Chan, Face recognition by support vector machines, Proc. of the 4th, IEEE International Conference on Automatic Face and Gesture Recognition, pp.196-201, 2000.
-
(2000)
Proc. of the 4th, IEEE International Conference on Automatic Face and Gesture Recognition
, pp. 196-201
-
-
Guo, G.1
Li, S.Z.2
Chan, K.3
-
5
-
-
0036858347
-
Support vector machines for texture classification
-
K. I. Kim, K. Jung, S. H. Park and H. J. Kim, Support vector machines for texture classification, IEEE Trans, on Pattern Analysis and Machine Intelligence 24, no.11, pp.1542-1550, 2002.
-
(2002)
IEEE Trans, on Pattern Analysis and Machine Intelligence
, vol.24
, Issue.11
, pp. 1542-1550
-
-
Kim, K.I.1
Jung, K.2
Park, S.H.3
Kim, H.J.4
-
6
-
-
0141738785
-
Secondary structure prediction with support vector machines
-
J. J. Ward, L. J. McGufiin, B. F. Buxton and D. T. Jones, Secondary structure prediction with support vector machines, Bioinforniatics 19, no.13, pp.1650-1655, 2003.
-
(2003)
Bioinforniatics
, vol.19
, Issue.13
, pp. 1650-1655
-
-
Ward, J.J.1
McGufiin, L.J.2
Buxton, B.F.3
Jones, D.T.4
-
7
-
-
63649137061
-
Intrusion detection using a hybrid support vector machine based on entropy and TF-IDF
-
R.-C. Chen and S.-P. Chen, Intrusion detection using a hybrid support vector machine based on entropy and TF-IDF, International Journal of Innovative Computing. Information and, Control 4, no.2, pp.413-424, 2008.
-
(2008)
International Journal of Innovative Computing. Information And, Control
, vol.4
, Issue.2
, pp. 413-424
-
-
Chen, R.-C.1
Chen, S.-P.2
-
8
-
-
0034266838
-
Robust, linear and support, vector regression
-
O.L. Mangasarian and D. R. Musicant, Robust, linear and support, vector regression, IEEE Trans, on Pattern Analysis and Machine Intelligence 22, no.9, pp.950-955, 2000.
-
(2000)
IEEE Trans, on Pattern Analysis and Machine Intelligence
, vol.22
, Issue.9
, pp. 950-955
-
-
Mangasarian, O.L.1
Musicant, D.R.2
-
9
-
-
63649099779
-
A lazy learning control method using support vector regression
-
M. Kobayashi, Y. Konislii and H. Ishigaki, A lazy learning control method using support vector regression. International Journal of Innovative Computing. Information and Control 3, no.6, pp.1511-1523, 2007.
-
(2007)
International Journal of Innovative Computing. Information and Control
, vol.3
, Issue.6
, pp. 1511-1523
-
-
Kobayashi, M.1
Konislii, Y.2
Ishigaki, H.3
-
10
-
-
34249018832
-
Image suporrosolution using support vector regression
-
K. S. Ni and T. Q. Nguyen, Image suporrosolution using support vector regression, IEEE Trans. on Image Processing 16, no.6, pp.1596-1610, 2007.
-
(2007)
IEEE Trans. on Image Processing
, vol.16
, Issue.6
, pp. 1596-1610
-
-
Ni, K.S.1
Nguyen, T.Q.2
-
11
-
-
63549100038
-
Support vector regression with input data uncertainty
-
P. Zhong and L. Wang, Support vector regression with input data uncertainty. International Journal of Innovative Computing, Information and Control 4, no.9, pp.2325-2332, 2008.
-
(2008)
International Journal of Innovative Computing, Information and Control
, vol.4
, Issue.9
, pp. 2325-2332
-
-
Zhong, P.1
Wang, L.2
-
12
-
-
0001089823
-
Support vector clustering
-
A. Ben-Hur, D. Horn, H. T. Siegelmann and V. Yapnik, Support vector clustering. Journal of Machine Learning Research 2, pp.125-137, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.T.3
Yapnik, V.4
-
13
-
-
0033220728
-
Support vector domain description
-
D. M. J. Tax and R. P. W. Duin, Support vector domain description. Pattern Recognition Letters 20, no.11-13, pp.1191-1199, 1999.
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1191-1199
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
14
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
K. R. A Killer, S. Mika, G. Ratsoh, K. Tsuda and B. Scliolkopf, An introduction to kernel-based learning algorithms, IEEE Trans, on Neural Networks 12, no.2, pp.181-201, 2001.
-
(2001)
IEEE Trans, on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Killer, K.R.A.1
Mika, S.2
Ratsoh, G.3
Tsuda, K.4
Scliolkopf, B.5
-
15
-
-
85089251671
-
Comparison of classifier methods: A case study in handwritten digit recognition
-
L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun, U. Miiller, E. Sackinger, P. Simard and V. Yapnik, Comparison of classifier methods: A case study in handwritten digit recognition, Proc. of the International Conference on Pattern Recognition, pp.77-87, 1994.
-
(1994)
Proc. of the International Conference on Pattern Recognition
, pp. 77-87
-
-
Bottou, L.1
Cortes, C.2
Denker, J.3
Drucker, H.4
Guyon, I.5
Jackel, L.D.6
LeCun, Y.7
Miiller, U.8
Sackinger, E.9
Simard, P.10
Yapnik, V.11
-
16
-
-
0003440665
-
Another approach to polychotomous classification
-
Department of Statistics, Stanford University, Stanford, OA
-
J. Friedman, Another approach to polychotomous classification. Technical Report. Department of Statistics, Stanford University, Stanford, OA, 1996.
-
(1996)
Technical Report
-
-
Friedman, J.1
-
17
-
-
84888364466
-
Large margin DAGs for multiclass classification
-
J. C. Piatt, N. Cristianini and .J. Shawe-Taylor, Large margin DAGs for multiclass classification, Proc. of the Neural Information Processing Systems Conference 12, pp.547-553, 2000.
-
(2000)
Proc. of the Neural Information Processing Systems Conference
, vol.12
, pp. 547-553
-
-
Piatt, J.C.1
Cristianini, N.2
Shawe-Taylor, J.3
-
18
-
-
38049037979
-
One-class support-vector machines for the classification of bioacoustic time series
-
A. Sachs, C. Thiol and F. Sohwonkor, One-class support-vector machines for the classification of bioacoustic time series, ICGST International Journal on Artificial Intelligence and Machine Learning 6, no.4, pp.29-34, 2006.
-
(2006)
ICGST International Journal on Artificial Intelligence and Machine Learning
, vol.6
, Issue.4
, pp. 29-34
-
-
Sachs, A.1
Thiol, C.2
Sohwonkor, F.3
-
20
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, Y. Yapnik, O. Bousquet and S. Muklierjee, Choosing multiple parameters for support vector machines. Machine Learning 46, no.1-3, pp.131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Yapnik, Y.2
Bousquet, O.3
Muklierjee, S.4
-
21
-
-
0037382208
-
Evaluation of simple performance measures for tuning SYM hyperparameters
-
K. Duan, S. Keertlii and A. N. Poo, Evaluation of simple performance measures for tuning SYM hyperparameters, Neumconiputing. vol.51, no.4, pp.41-59, 2003.
-
(2003)
Neumconiputing.
, vol.51
, Issue.4
, pp. 41-59
-
-
Duan, K.1
Keertlii, S.2
Poo, A.N.3
-
22
-
-
15844394276
-
Evolutionary tuning of multiple svm parameters
-
Complete
-
F. Friedriehs and C. Igel, Evolutionary tuning of multiple svm parameters, Neuroconiput/ing. vol.64,no.Complete, pp.107-117, 2005.
-
(2005)
Neuroconiputing
, vol.64
, pp. 107-117
-
-
Friedriehs, F.1
Igel, C.2
-
23
-
-
0034271876
-
The evidence framework applied to support vector machines
-
J. T.-Y. Kwok, The evidence framework applied to support vector machines, IEEE Trans, on Neural Networks 11, no.5, pp.1162-1173, 2000.
-
(2000)
IEEE Trans, on Neural Networks
, vol.11
, Issue.5
, pp. 1162-1173
-
-
Kwok, J.T.-Y.1
-
24
-
-
63649087751
-
Support vector machine with adaptive parameters in image coding
-
Q. She, H. Su, L. Dong and J. Chu, Support vector machine with adaptive parameters in image coding. International Journal of Innovative Computing. Information and, Control 4, no.2, pp.359-367, 2008.
-
(2008)
International Journal of Innovative Computing. Information And, Control
, vol.4
, Issue.2
, pp. 359-367
-
-
She, Q.1
Su, H.2
Dong, L.3
Chu, J.4
-
25
-
-
8844263749
-
A statistical framework for genomic data fusion
-
G. Lanckriot, T. D. Bie, N. Cristianini, M. Jordan and W. Noble, A statistical framework for genomic data fusion, Bioinfornuitics. vol.20, no.16, pp.2626-2635, 2004.
-
(2004)
Bioinfornuitics.
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriot, G.1
Bie, T.D.2
Cristianini, N.3
Jordan, M.4
Noble, W.5
-
26
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. Lanckriot, N. Cristianini, P. Bartlett, L. E. Ghaoui and YI. I. Jordan, Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research 5, pp.27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriot, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, Y.I.I.5
-
27
-
-
84898956003
-
Kernel design using boosting
-
S. Becker, S. Thrun, K. Obermayor (wis.), MIT Press, Cambridge, MA, USA
-
K. Crammer, J. Keshet and Y. Singer, Kernel design using boosting, in Advances in Neural Information Processing Systems, S. Becker, S. Thrun, K. Obermayor (wis.), MIT Press, Cambridge, MA, USA 15, pp.537-544, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 537-544
-
-
Crammer, K.1
Keshet, J.2
Singer, Y.3
-
30
-
-
33144470194
-
Efficient hyporkornel learning using second-order cone programming
-
I. W.-H. Tsang and J. T.-Y. Kwok, Efficient hyporkornel learning using second-order cone programming, IEEE Trans, on Neural Networks 17, no.l, pp.48-58, 2006.
-
(2006)
IEEE Trans, on Neural Networks
, vol.17
, Issue.1
, pp. 48-58
-
-
Tsang, I.W.-H.1
Kwok, J.T.-Y.2
-
31
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Räetseh, C. Sehäefer and B. Scliölkopf, Large scale multiple kernel learning. Journal of Machine Learning Research 7, pp.1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Räetseh, G.2
Sehäefer, C.3
Scliölkopf, B.4
-
32
-
-
34547971778
-
More efficiency in multiple kernel learning
-
A. Rakotomamonjy, F. Bach, S. Canu and Y. Grandvalet, More efficiency in multiple kernel learning, Proc. of the 24th International Conference on Machine learning, pp.775-782, 2007.
-
(2007)
Proc. of the 24th International Conference on Machine Learning
, pp. 775-782
-
-
Rakotomamonjy, A.1
Bach, F.2
Canu, S.3
Grandvalet, Y.4
-
33
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Scliolkopf, C. J. C. Burgos, A. J. Smola (eds.), MIT Press, Cambridge, MA, USA
-
J. C. Piatt, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods: Support Vector Learning. B. Scliolkopf, C. J. C. Burgos, A. J. Smola (eds.), MIT Press, Cambridge, MA, USA, pp.185-208, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Piatt, J.C.1
-
35
-
-
0003612091
-
-
Prentice Hall, Englcwood Cliffs, N.J.
-
D. Michie, D. J. Spiegellialter and C. C. Taylor, Machine Learning. Neural and Statistical Classification, Prentice Hall, Englcwood Cliffs, N.J., 1994.
-
(1994)
Machine Learning. Neural and Statistical Classification
-
-
Michie, D.1
Spiegellialter, D.J.2
Taylor, C.C.3
-
37
-
-
0003713964
-
-
Second Edition, Athena Scientific, Massachusetts
-
D. P. Bertsekas, Nonlinear Programming, Second Edition, Athena Scientific, Massachusetts
-
(1999)
Nonlinear Programming
-
-
Bertsekas, D.P.1
|