메뉴 건너뛰기




Volumn 6, Issue 5, 2010, Pages 2245-2262

Multi-kernel support vector clustering for multi-class classification

Author keywords

Gradient projection; Multi class classification; Multi kernel learning; SMO; Support vector clustering

Indexed keywords

DATA SETS; DISCRIMINANT FUNCTIONS; GRADIENT PROJECTIONS; HYPERPARAMETERS; KERNEL FUNCTION; KERNEL MATRICES; MULTI-CLASS; MULTI-CLASS CLASSIFICATION; MULTI-KERNEL; MULTICLASS CLASSIFICATION PROBLEMS; SEMI-DEFINITE PROGRAMMING; SEQUENTIAL MINIMAL OPTIMIZATION; STATLOG; SUPPORT VECTOR CLUSTERING; TIME AND SPACE; TWO STAGE;

EID: 77952973177     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (17)

References (38)
  • 1
    • 34249753618 scopus 로고
    • Support-vector network
    • C. Cortes and V. Yapnik, Support-vector network. Machine Learning 20, no.3, pp.273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Yapnik, V.2
  • 3
    • 0032594950 scopus 로고    scopus 로고
    • Support, vector machines for spam categorization
    • H. Drucker, D. Wu and Y. Yapnik, Support, vector machines for spam categorization, IEEE Trans, on Neural Networks 10, no.5, pp.1048-1054, 1999.
    • (1999) IEEE Trans, on Neural Networks , vol.10 , Issue.5 , pp. 1048-1054
    • Drucker, H.1    Wu, D.2    Yapnik, Y.3
  • 6
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • J. J. Ward, L. J. McGufiin, B. F. Buxton and D. T. Jones, Secondary structure prediction with support vector machines, Bioinforniatics 19, no.13, pp.1650-1655, 2003.
    • (2003) Bioinforniatics , vol.19 , Issue.13 , pp. 1650-1655
    • Ward, J.J.1    McGufiin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 10
    • 34249018832 scopus 로고    scopus 로고
    • Image suporrosolution using support vector regression
    • K. S. Ni and T. Q. Nguyen, Image suporrosolution using support vector regression, IEEE Trans. on Image Processing 16, no.6, pp.1596-1610, 2007.
    • (2007) IEEE Trans. on Image Processing , vol.16 , Issue.6 , pp. 1596-1610
    • Ni, K.S.1    Nguyen, T.Q.2
  • 13
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • D. M. J. Tax and R. P. W. Duin, Support vector domain description. Pattern Recognition Letters 20, no.11-13, pp.1191-1199, 1999.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 16
    • 0003440665 scopus 로고    scopus 로고
    • Another approach to polychotomous classification
    • Department of Statistics, Stanford University, Stanford, OA
    • J. Friedman, Another approach to polychotomous classification. Technical Report. Department of Statistics, Stanford University, Stanford, OA, 1996.
    • (1996) Technical Report
    • Friedman, J.1
  • 20
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, Y. Yapnik, O. Bousquet and S. Muklierjee, Choosing multiple parameters for support vector machines. Machine Learning 46, no.1-3, pp.131-159, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Yapnik, Y.2    Bousquet, O.3    Muklierjee, S.4
  • 21
    • 0037382208 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning SYM hyperparameters
    • K. Duan, S. Keertlii and A. N. Poo, Evaluation of simple performance measures for tuning SYM hyperparameters, Neumconiputing. vol.51, no.4, pp.41-59, 2003.
    • (2003) Neumconiputing. , vol.51 , Issue.4 , pp. 41-59
    • Duan, K.1    Keertlii, S.2    Poo, A.N.3
  • 22
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple svm parameters
    • Complete
    • F. Friedriehs and C. Igel, Evolutionary tuning of multiple svm parameters, Neuroconiput/ing. vol.64,no.Complete, pp.107-117, 2005.
    • (2005) Neuroconiputing , vol.64 , pp. 107-117
    • Friedriehs, F.1    Igel, C.2
  • 23
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • J. T.-Y. Kwok, The evidence framework applied to support vector machines, IEEE Trans, on Neural Networks 11, no.5, pp.1162-1173, 2000.
    • (2000) IEEE Trans, on Neural Networks , vol.11 , Issue.5 , pp. 1162-1173
    • Kwok, J.T.-Y.1
  • 27
    • 84898956003 scopus 로고    scopus 로고
    • Kernel design using boosting
    • S. Becker, S. Thrun, K. Obermayor (wis.), MIT Press, Cambridge, MA, USA
    • K. Crammer, J. Keshet and Y. Singer, Kernel design using boosting, in Advances in Neural Information Processing Systems, S. Becker, S. Thrun, K. Obermayor (wis.), MIT Press, Cambridge, MA, USA 15, pp.537-544, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 537-544
    • Crammer, K.1    Keshet, J.2    Singer, Y.3
  • 30
    • 33144470194 scopus 로고    scopus 로고
    • Efficient hyporkornel learning using second-order cone programming
    • I. W.-H. Tsang and J. T.-Y. Kwok, Efficient hyporkornel learning using second-order cone programming, IEEE Trans, on Neural Networks 17, no.l, pp.48-58, 2006.
    • (2006) IEEE Trans, on Neural Networks , vol.17 , Issue.1 , pp. 48-58
    • Tsang, I.W.-H.1    Kwok, J.T.-Y.2
  • 33
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Scliolkopf, C. J. C. Burgos, A. J. Smola (eds.), MIT Press, Cambridge, MA, USA
    • J. C. Piatt, Fast training of support vector machines using sequential minimal optimization, in Advances in Kernel Methods: Support Vector Learning. B. Scliolkopf, C. J. C. Burgos, A. J. Smola (eds.), MIT Press, Cambridge, MA, USA, pp.185-208, 1999.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Piatt, J.C.1
  • 37
    • 0003713964 scopus 로고    scopus 로고
    • Second Edition, Athena Scientific, Massachusetts
    • D. P. Bertsekas, Nonlinear Programming, Second Edition, Athena Scientific, Massachusetts
    • (1999) Nonlinear Programming
    • Bertsekas, D.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.