메뉴 건너뛰기




Volumn 4, Issue 2, 2008, Pages 359-367

Support vector machine with adaptive parameters in image coding

Author keywords

Discrete cosine transform (DCT); Image compression; Support vector macnme (SVM)

Indexed keywords


EID: 63649087751     PISSN: 13494198     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (32)

References (31)
  • 1
    • 0026142897 scopus 로고
    • The JPEG still picture compression standard
    • G. K. Wallace, The JPEG still picture compression standard, Communications of the ACM, vol.34, no.4, pp.30-44, 1991.
    • (1991) Communications of the ACM , vol.34 , Issue.4 , pp. 30-44
    • Wallace, G.K.1
  • 2
    • 0020098639 scopus 로고
    • On the structure of vector quantizers
    • A. Gersho, On the structure of vector quantizers, IEEE Trans, on Information Theory, vol.28, no.2, pp.157-166, 1982.
    • (1982) IEEE Trans, on Information Theory , vol.28 , Issue.2 , pp. 157-166
    • Gersho, A.1
  • 3
    • 0026630755 scopus 로고
    • Image coding based on fractal theory of iterated contractive image transformations
    • A. E. Jacquin, Image coding based on fractal theory of iterated contractive image transformations, IEEE Trans, on Image Processing, vol.l, no.l, pp.18-30, 1992.
    • (1992) IEEE Trans, on Image Processing , vol.50 , Issue.L , pp. 18-30
    • Jacquin, A.E.1
  • 5
    • 0001574510 scopus 로고    scopus 로고
    • Image coding based on morphological representation of wavelet data
    • S. D. Servetto, K. Ramchandran and M. T. Orchard, Image coding based on morphological representation of wavelet data, IEEE Trans, on Image Processing, vol.8, no.9, pp.1161-1174, 1999.
    • (1999) IEEE Trans, on Image Processing , vol.8 , Issue.9 , pp. 1161-1174
    • Servetto, S.D.1    Ramchandran, K.2    Orchard, M.T.3
  • 6
    • 34047199496 scopus 로고    scopus 로고
    • JTC1/SC29/WG1 N1855, JPEG2000 Part I: Final Draft International Standard
    • ISO/IEC, ISO/IEC FDIS 15444-1
    • ISO/IEC JTC1/SC29/WG1 N1855, JPEG2000 Part I: Final Draft International Standard (ISO/IEC FDIS 15444-1), 2000.
    • (2000)
  • 8
    • 0025680210 scopus 로고
    • Nonlinear predictive image coding with a neural network
    • Albuquerque, New Mexico, USA, pp
    • Z. He and H. Li, Nonlinear predictive image coding with a neural network, Proc. of the Int. Conf. on Acoustics, Speech and Signal Processing, Albuquerque, New Mexico, USA, pp. 1009-1012, 1990.
    • (1990) Proc. of the Int. Conf. on Acoustics, Speech and Signal Processing , pp. 1009-1012
    • He, Z.1    Li, H.2
  • 13
    • 0025786441 scopus 로고
    • Image compression with back-propagation: Improvement of the visual restoration using different cost functions
    • M. Mougeot, R. Azencott and B. Augeniol, Image compression with back-propagation: Improvement of the visual restoration using different cost functions, Neural Networks, vol.4, no.4, pp.467-476, 1991.
    • (1991) Neural Networks , vol.4 , Issue.4 , pp. 467-476
    • Mougeot, M.1    Azencott, R.2    Augeniol, B.3
  • 14
    • 0028547909 scopus 로고    scopus 로고
    • M. A. Abidi, S. Yasuki and P. B. Crilly, Image compression using hybrid neural networks combining the auto-associative multi-layer perceptron and the self-organizing feature map, IEEE Trans, on Consumer Electronics, 40, no.4, pρ.796-811, 1994.
    • M. A. Abidi, S. Yasuki and P. B. Crilly, Image compression using hybrid neural networks combining the auto-associative multi-layer perceptron and the self-organizing feature map, IEEE Trans, on Consumer Electronics, vol.40, no.4, pρ.796-811, 1994.
  • 15
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Knowledge Discovery and Data Mining, vol.2, no.2, pp.121-167, 1998.
    • (1998) Knowledge Discovery and Data Mining , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 16
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation and signal processing
    • MIT Press, Cambridge, Massachusetts
    • V. N. Vapnik, S. E. Golowich and A. J. Smola, Support vector method for function approximation, regression estimation and signal processing, Advances in Neural Information Processing Systems, vol.9, pp.281-287, MIT Press, Cambridge, Massachusetts, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 281-287
    • Vapnik, V.N.1    Golowich, S.E.2    Smola, A.J.3
  • 17
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • NC2-TR-1998-030, Royal Holloway College, University of London, UK
    • A. J. Smola and B. Schölkpf, A tutorial on support vector regression, NeuroCOLT Technical Report NC2-TR-1998-030, Royal Holloway College, University of London, UK, 1998.
    • (1998) NeuroCOLT Technical Report
    • Smola, A.J.1    Schölkpf, B.2
  • 20
    • 84952793749 scopus 로고    scopus 로고
    • Support vector machines trained by linear programming: Theory and application in image compression and data classification
    • University of Belgrade, Yugoslavia, pp
    • I. Hadzic and V. Kecman, Support vector machines trained by linear programming: Theory and application in image compression and data classification, Proc. of the 5th Seminar on Neural Network Applications in Electrical Engineering, University of Belgrade, Yugoslavia, pp.18-23, 2000.
    • (2000) Proc. of the 5th Seminar on Neural Network Applications in Electrical Engineering , pp. 18-23
    • Hadzic, I.1    Kecman, V.2
  • 21
    • 0041523974 scopus 로고    scopus 로고
    • Combining support vector machine learning with the discrete cosine transform in image compression
    • J. Robinson and V. Kecman, Combining support vector machine learning with the discrete cosine transform in image compression, IEEE Trans, on Neural Networks, vol. 14, no.4, pp.950-958, 2003.
    • (2003) IEEE Trans, on Neural Networks , vol.14 , Issue.4 , pp. 950-958
    • Robinson, J.1    Kecman, V.2
  • 22
  • 24
    • 0036505650 scopus 로고    scopus 로고
    • Fuzzy support vector machines
    • C. F. Lin and S. D. Wang, Fuzzy support vector machines, IEEE Trans, on Neural Networks, vol. 13, no.2, pp.464-471, 2002.
    • (2002) IEEE Trans, on Neural Networks , vol.13 , Issue.2 , pp. 464-471
    • Lin, C.F.1    Wang, S.D.2
  • 25
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A. J. Smola, B. Schölkopf and K. R. Müller, The connection between regularization operators and support vector kernels, IEEE Trans, on Neural Networks, vol.ll, no.4, pp.637-649, 1998.
    • (1998) IEEE Trans, on Neural Networks , vol.100 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.R.3
  • 26
    • 0037844881 scopus 로고    scopus 로고
    • Linear dependency between e and the input noise in e-support vector regression
    • J. T. Kwok and I. W. Tsang, Linear dependency between e and the input noise in e-support vector regression, IEEE Transactions on Neural Networks, vol. 14, no.3, pp.544-553, 2003.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.3 , pp. 544-553
    • Kwok, J.T.1    Tsang, I.W.2
  • 27
    • 0141869869 scopus 로고    scopus 로고
    • A pattern search method for model selection of support vector regression
    • Philadelphia: SIAM, pp
    • M. Momma and K. P. Bennett, A pattern search method for model selection of support vector regression, Proc. of the SIAM Int. Conf. on Data Mining, Philadelphia: SIAM, pp.261-274, 2002.
    • (2002) Proc. of the SIAM Int. Conf. on Data Mining , pp. 261-274
    • Momma, M.1    Bennett, K.P.2
  • 28
    • 1242331293 scopus 로고    scopus 로고
    • Bayesian support vector regression using a unified loss function
    • W. Chu, S. S. Keerthi and C. J. Ong, Bayesian support vector regression using a unified loss function, IEEE Trans, on Neural Networks, vol.15, no.l, pp.29-44, 2004.
    • (2004) IEEE Trans, on Neural Networks , vol.15 , Issue.L , pp. 29-44
    • Chu, W.1    Keerthi, S.S.2    Ong, C.J.3
  • 29
    • 17444398555 scopus 로고    scopus 로고
    • Leave-one-out bounds for support vector regression model selection
    • M. W. Chang and C. J. Lin, Leave-one-out bounds for support vector regression model selection, Neural Computation, vol.17, pp.1182-1222, 2005.
    • (2005) Neural Computation , vol.17 , pp. 1182-1222
    • Chang, M.W.1    Lin, C.J.2
  • 30
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • San Francisco, California, USA: Morgan Kaufmann, pp
    • R. Kahavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proc. of the 14th Int. Joint Conf. on Artificial Intelligence, San Francisco, California, USA: Morgan Kaufmann, pp.1137-1143, 1995.
    • (1995) Proc. of the 14th Int. Joint Conf. on Artificial Intelligence , pp. 1137-1143
    • Kahavi, R.1
  • 31
    • 63649116332 scopus 로고    scopus 로고
    • C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.
    • C. C. Chang and C. J. Lin, LIBSVM: A library for support vector machines, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.