메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1840-1852

Principal component analysis based on non-parametric maximum entropy

Author keywords

Entropy; Information theoretic learning; PCA; Subspace learning

Indexed keywords

A-LAPLACIAN; EIGENVECTORS; INFORMATION THEORETIC LEARNING; LINEAR METHODS; MAXIMUM ENTROPY; NON-PARAMETRIC; OPTIMAL SOLUTIONS; PARZEN WINDOW ESTIMATION; PCA; PROBABILITY MATRIXES; QUADRATIC ENTROPY; REAL-WORLD DATASETS; RECONSTRUCTION ERROR; ROBUST PCA; ROTATION INVARIANT; SUBSPACE LEARNING;

EID: 77952546541     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.12.032     Document Type: Article
Times cited : (47)

References (72)
  • 2
    • 84878031768 scopus 로고    scopus 로고
    • Statistical challenges with high dimensionality: feature selection in knowledge discovery, in: the Madrid International Congress of Mathematician
    • J. Fan, R. Li, Statistical challenges with high dimensionality: feature selection in knowledge discovery, in: the Madrid International Congress of Mathematician, 2006, pp. 595-622.
    • (2006) , pp. 595-622
    • Fan, J.1    Li, R.2
  • 3
    • 44649106875 scopus 로고    scopus 로고
    • Tensor rank one discriminant analysis-a convergent method for discriminative multilinear subspace selection
    • Tao D., Li X., Wu X., Maybank S. Tensor rank one discriminant analysis-a convergent method for discriminative multilinear subspace selection. Neurocomputing 2008, 71:1866-1882.
    • (2008) Neurocomputing , vol.71 , pp. 1866-1882
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.4
  • 7
    • 47749121391 scopus 로고    scopus 로고
    • Local coordinates alignment (LCA): a novel manifold learning approach
    • Zhang T., Li X., Yang D.T.J. Local coordinates alignment (LCA): a novel manifold learning approach. IJPRAI 2008, 22(4):667-690.
    • (2008) IJPRAI , vol.22 , Issue.4 , pp. 667-690
    • Zhang, T.1    Li, X.2    Yang, D.T.J.3
  • 8
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 1933, 24:417-441.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 9
    • 45549085231 scopus 로고    scopus 로고
    • KPCA for semantic object extraction in images
    • Li J., Li X., Tao D. KPCA for semantic object extraction in images. Pattern Recognition 2008, 41:3244-3250.
    • (2008) Pattern Recognition , vol.41 , pp. 3244-3250
    • Li, J.1    Li, X.2    Tao, D.3
  • 11
    • 33846009099 scopus 로고    scopus 로고
    • 2d-lpp: A two-dimensional extension of locality preserving projections
    • Chen S., Zhao H., Kong M., Luo B. 2d-lpp: A two-dimensional extension of locality preserving projections. Neurocomputing 2007, 70:912-921.
    • (2007) Neurocomputing , vol.70 , pp. 912-921
    • Chen, S.1    Zhao, H.2    Kong, M.3    Luo, B.4
  • 13
    • 0029184173 scopus 로고
    • Robust principal component analysis by self-organizing rules based on statistical physics approach
    • Xu L., Yuille A. Robust principal component analysis by self-organizing rules based on statistical physics approach. IEEE Transactions on Neural Networks 1995, 6:131-143.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 131-143
    • Xu, L.1    Yuille, A.2
  • 15
    • 23844486772 scopus 로고    scopus 로고
    • Principal components and orthogonal regression based on robust scales
    • Maronna R.A. Principal components and orthogonal regression based on robust scales. Technometrics 2005, 47:264-273.
    • (2005) Technometrics , vol.47 , pp. 264-273
    • Maronna, R.A.1
  • 18
    • 33745179218 scopus 로고    scopus 로고
    • Robust l1 norm factorization in the presence of outliers and missing data by alternative convex programming, in: Computer Vision and Pattern Recognition
    • Q. Ke, T. Kanade, Robust l1 norm factorization in the presence of outliers and missing data by alternative convex programming, in: Computer Vision and Pattern Recognition, 2005.
    • (2005)
    • Ke, Q.1    Kanade, T.2
  • 19
    • 33749255817 scopus 로고    scopus 로고
    • R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization, in: International Conference on Machine Learning
    • C. Ding, D. Zhou, X. He, H. Zha, R1-pca: rotational invariant l1-norm principal component analysis for robust subspace factorization, in: International Conference on Machine Learning, 2006.
    • (2006)
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 21
    • 76649139002 scopus 로고    scopus 로고
    • L1-norm based tensor analysis, IEEE Transactions on Circuits and Systems for Video Technology
    • Y.W. Pang, X.L. Li, Y. Yuan, L1-norm based tensor analysis, IEEE Transactions on Circuits and Systems for Video Technology 20 (2) (2010) 172-178.
    • (2010) , vol.20 , Issue.2 , pp. 172-178
    • Pang, Y.W.1    Li, X.L.2    Yuan, Y.3
  • 23
    • 13444287831 scopus 로고    scopus 로고
    • Robpca a new approach to robust principal component analysis
    • Hubert M., Rousseeuwy P., Branden K. Robpca a new approach to robust principal component analysis. Technometrics 2005, 47:64-79.
    • (2005) Technometrics , vol.47 , pp. 64-79
    • Hubert, M.1    Rousseeuwy, P.2    Branden, K.3
  • 24
    • 33745213148 scopus 로고    scopus 로고
    • Locally principal component learning for face representation and recognition
    • Yang J., Zhang D., Yang J. Locally principal component learning for face representation and recognition. Neurocomputing 2006, 69:1697-1701.
    • (2006) Neurocomputing , vol.69 , pp. 1697-1701
    • Yang, J.1    Zhang, D.2    Yang, J.3
  • 25
    • 8644270422 scopus 로고    scopus 로고
    • An extension of neural gas to local pca
    • Moller R., Hoffmannb H. An extension of neural gas to local pca. Neurocomputing 2004, 62:305-326.
    • (2004) Neurocomputing , vol.62 , pp. 305-326
    • Moller, R.1    Hoffmannb, H.2
  • 26
    • 77952553344 scopus 로고    scopus 로고
    • A new local pca-som algorithm
    • Huang D., Yia Z., Pu X. A new local pca-som algorithm. Neurocomputing 2004, 71:16-18.
    • (2004) Neurocomputing , vol.71 , pp. 16-18
    • Huang, D.1    Yia, Z.2    Pu, X.3
  • 27
    • 5044232102 scopus 로고    scopus 로고
    • Local smoothing for manifold learning, in: Computer Vision and Pattern Recognition
    • J. Park, Z. Zhang, H. Zha, R. Kasturi, Local smoothing for manifold learning, in: Computer Vision and Pattern Recognition, 2004.
    • (2004)
    • Park, J.1    Zhang, Z.2    Zha, H.3    Kasturi, R.4
  • 28
    • 50649122333 scopus 로고    scopus 로고
    • Laplacian pca and its applications, in: International Conference on Computer Vision
    • D. Zhao, Z. Lin, X. Tang, Laplacian pca and its applications, in: International Conference on Computer Vision, 2007.
    • (2007)
    • Zhao, D.1    Lin, Z.2    Tang, X.3
  • 29
    • 5044234987 scopus 로고    scopus 로고
    • Generalized principal component analysis, in: Computer Vision and Pattern Recognition
    • R. Vidal, Y. Ma, S. Sastry, Generalized principal component analysis, in: Computer Vision and Pattern Recognition, vol. 1, 2003, pp. 621-628.
    • (2003) , vol.1 , pp. 621-628
    • Vidal, R.1    Ma, Y.2    Sastry, S.3
  • 30
    • 77952550776 scopus 로고    scopus 로고
    • Information-theoretic learning
    • J. Principe, D. Xu, J.W.F. Iii, Information-theoretic learning. http://www.cnel.ufl.edu/bib/./pdf_papers/chapter7.pdf.
    • Principe, J.1    Xu, D.2    Iii, J.W.F.3
  • 31
    • 0003626613 scopus 로고    scopus 로고
    • Energy, entropy and information potential for neural computation
    • University of Florida
    • D. Xu, Energy, entropy and information potential for neural computation, Ph.D. Thesis, University of Florida, 1999.
    • (1999) Ph.D. Thesis
    • Xu, D.1
  • 32
    • 77952553565 scopus 로고
    • Empirical entropy manipulation for real-world problems, in: Neural Information Processing Systems (NIPS)
    • P. Viola, N. Schraudolph, T. Sejnowski, Empirical entropy manipulation for real-world problems, in: Neural Information Processing Systems (NIPS), 1995, pp. 851-857.
    • (1995) , pp. 851-857
    • Viola, P.1    Schraudolph, N.2    Sejnowski, T.3
  • 33
    • 71149108231 scopus 로고    scopus 로고
    • Robust feature extraction via information theoretic learning, in: International Conference on Machine Learning (ICML 2009), Montreal, Canada
    • X. Yuan, B. Hu, Robust feature extraction via information theoretic learning, in: International Conference on Machine Learning (ICML 2009), Montreal, Canada, 2009.
    • (2009)
    • Yuan, X.1    Hu, B.2
  • 34
    • 0012993529 scopus 로고    scopus 로고
    • Orthogonal series density estimation and the kernel eigenvalue problem
    • Girolami M. Orthogonal series density estimation and the kernel eigenvalue problem. Neural Computation 2002, 14(3):669-688.
    • (2002) Neural Computation , vol.14 , Issue.3 , pp. 669-688
    • Girolami, M.1
  • 36
    • 40649102190 scopus 로고    scopus 로고
    • Information theoretic angle-based spectral clustering: a theoretical analysis and an algorithm, in: International joint conference on neural networks
    • R. Jenssen, D. Erdogmus, J. Principe, T. Eltoft, Information theoretic angle-based spectral clustering: a theoretical analysis and an algorithm, in: International joint conference on neural networks, 2006, pp. 4904-4911.
    • (2006) , pp. 4904-4911
    • Jenssen, R.1    Erdogmus, D.2    Principe, J.3    Eltoft, T.4
  • 37
    • 33745711479 scopus 로고    scopus 로고
    • kernel principal component are maximum entropy projection, in: ICA
    • A.R. Paiva, J. Wu, J. Principe, kernel principal component are maximum entropy projection, in: ICA, 2006, pp. 846-853.
    • (2006) , pp. 846-853
    • Paiva, A.R.1    Wu, J.2    Principe, J.3
  • 38
    • 77952553059 scopus 로고    scopus 로고
    • Kernel maximum entropy data transformation and an enhanced spectral clustering algorithm, in: Neural Information Processing Systems (NIPS)
    • R. Jenssen, T. Eltoft, M. Girolami, D. Erdogmus, Kernel maximum entropy data transformation and an enhanced spectral clustering algorithm, in: Neural Information Processing Systems (NIPS), 2006.
    • (2006)
    • Jenssen, R.1    Eltoft, T.2    Girolami, M.3    Erdogmus, D.4
  • 41
    • 84898929664 scopus 로고    scopus 로고
    • Em algorithms for PCA and SPCA, in: Neural Information Processing Systems (NIPS)
    • S. Roweis, Em algorithms for PCA and SPCA, in: Neural Information Processing Systems (NIPS), 1997, pp. 626-632.
    • (1997) , pp. 626-632
    • Roweis, S.1
  • 42
    • 33847380221 scopus 로고    scopus 로고
    • Learning principal directions: integrated-squared-error minimization
    • Ahna J., Oha J., Choib S. Learning principal directions: integrated-squared-error minimization. Neurocomputing 2007, 70:1372-1381.
    • (2007) Neurocomputing , vol.70 , pp. 1372-1381
    • Ahna, J.1    Oha, J.2    Choib, S.3
  • 45
    • 77952544160 scopus 로고    scopus 로고
    • Robust subspace computation using l1 norm, Techical Report.
    • Q. Ke, T. Kanade, Robust subspace computation using l1 norm, Techical Report. http://citeseer.ist.psu.edu/ke03robust.html.
    • Ke, Q.1    Kanade, T.2
  • 46
    • 33846286774 scopus 로고    scopus 로고
    • Weighted and robust learning of subspace representations
    • Danijel S., Ales L., Horst B. Weighted and robust learning of subspace representations. Pattern Recognition 2007, 40:1556-1569.
    • (2007) Pattern Recognition , vol.40 , pp. 1556-1569
    • Danijel, S.1    Ales, L.2    Horst, B.3
  • 48
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf B., Smola A.J., Muller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998, 10:1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.J.2    Muller, K.R.3
  • 50
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by nonparametric mutual information maximization
    • Torkkola K. Feature extraction by nonparametric mutual information maximization. Journal of Machine Learning Research 2003, 3:1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 52
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: properties and applications in non-Gaussian signal processing
    • Liu W., Pokharel P.P., Principe J.C. Correntropy: properties and applications in non-Gaussian signal processing. IEEE Transactions on Signal Processing 2007, 55(11):5286-5298.
    • (2007) IEEE Transactions on Signal Processing , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.P.2    Principe, J.C.3
  • 53
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 1999, 10:626-634.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 626-634
    • Hyvarinen, A.1
  • 54
    • 34248183970 scopus 로고    scopus 로고
    • Fast principal component analysis using fixed-point algorithm
    • Sharma A., Paliwal K.K. Fast principal component analysis using fixed-point algorithm. Pattern Recognition Letters 2007, 28:1151-1155.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 1151-1155
    • Sharma, A.1    Paliwal, K.K.2
  • 55
    • 63449129600 scopus 로고    scopus 로고
    • Iterative subspace analysis based on feature line distance
    • Pang Y., Yuan Y., Li X. Iterative subspace analysis based on feature line distance. IEEE Transactions on Image Processing 2009, 18:903-907.
    • (2009) IEEE Transactions on Image Processing , vol.18 , pp. 903-907
    • Pang, Y.1    Yuan, Y.2    Li, X.3
  • 57
    • 14344249889 scopus 로고    scopus 로고
    • Feature selection, l1 vs. l2 regularization, and rotational invariance, in: International Conference on Machine Learning
    • A. Ng, Feature selection, l1 vs. l2 regularization, and rotational invariance, in: International Conference on Machine Learning, 2004.
    • (2004)
    • Ng, A.1
  • 59
    • 77952551835 scopus 로고    scopus 로고
    • Uci repository of machine learning databases
    • D. Newman, S. Hettich, C. Blake, C. Merz, Uci repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html.
    • Newman, D.1    Hettich, S.2    Blake, C.3    Merz, C.4
  • 61
    • 35548956430 scopus 로고    scopus 로고
    • Principal component analysis for data containing outliers and missing elements
    • Serneels S., Verdonck T. Principal component analysis for data containing outliers and missing elements. Computational Statistics and Data Analysis 2008, 52:1712-1727.
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 1712-1727
    • Serneels, S.1    Verdonck, T.2
  • 67
    • 70349966130 scopus 로고    scopus 로고
    • Variational graph embedding for globally and locally consistent feature extraction, in: Europe Conference on Machine Learning (ECML)
    • S.H. Yang, H.Y. Zha, S. Zhou, B.-G. Hu, Variational graph embedding for globally and locally consistent feature extraction, in: Europe Conference on Machine Learning (ECML), 2009, pp. 538-553.
    • (2009) , pp. 538-553
    • Yang, S.H.1    Zha, H.Y.2    Zhou, S.3    Hu, B.-G.4
  • 68
    • 77952550626 scopus 로고    scopus 로고
    • Robust discriminant analysis based on nonparametric maximum entropy, in: Asian Conference on Machine Learning (ACML), NanJing, China
    • R. He, B. Hu, X. Yuan, Robust discriminant analysis based on nonparametric maximum entropy, in: Asian Conference on Machine Learning (ACML), NanJing, China, 2009.
    • (2009)
    • He, R.1    Hu, B.2    Yuan, X.3
  • 69
    • 0036507674 scopus 로고    scopus 로고
    • Breakdown points of cauchy regression-scale estimators
    • Mizera I., Muller C. Breakdown points of cauchy regression-scale estimators. Statistics and Probability Letters 2002, 57:79-89.
    • (2002) Statistics and Probability Letters , vol.57 , pp. 79-89
    • Mizera, I.1    Muller, C.2
  • 72
    • 84937556212 scopus 로고    scopus 로고
    • Robust active shape model search, in: European Conference on Computer Vision, Springer
    • M. Rogers, J. Graham, Robust active shape model search, in: European Conference on Computer Vision, Springer, 2002, pp. 517-530.
    • (2002) , pp. 517-530
    • Rogers, M.1    Graham, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.