메뉴 건너뛰기




Volumn 5782 LNAI, Issue PART 2, 2009, Pages 538-553

Variational graph embedding for globally and locally consistent feature extraction

Author keywords

[No Author keywords available]

Indexed keywords

BAYES ERROR RATE; DATA SETS; FEATURE EXTRACTION METHODS; GEOMETRIC INFORMATION; GRAPH EMBEDDINGS; HIGH QUALITY; MUTUAL INFORMATIONS; NON-PARAMETRIC; SPECTRAL ANALYSIS; VARIATIONAL OPTIMIZATION;

EID: 70349966130     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04174-7_35     Document Type: Conference Paper
Times cited : (28)

References (29)
  • 4
    • 0038667918 scopus 로고    scopus 로고
    • Feature extraction based on the bhattacharyya distance
    • Choi, E.: Feature Extraction Based on the Bhattacharyya Distance. Pattern Recognition 36, 1703-1709 (2003)
    • (2003) Pattern Recognition , vol.36 , pp. 1703-1709
    • Choi, E.1
  • 5
    • 84878031768 scopus 로고    scopus 로고
    • Statistical challenges with high dimensionality: Feature selection in knowledge discovery
    • Fan, J., Li, R.: Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery. In: Proceeding of Regional Conference in Mathematics (AMS 1996), vol.3, pp. 595-622 (1996)
    • (1996) Proceeding of Regional Conference in Mathematics (AMS 1996 , vol.3 , pp. 595-622
    • Fan, J.1    Li, R.2
  • 8
  • 11
    • 4043084564 scopus 로고    scopus 로고
    • Tutorial on variational approximation methods
    • In: Opper, M., Saad, D. (eds.). MIT Press, Cambridge
    • Jaakkola, T.: Tutorial on Variational Approximation Methods. In: Opper, M., Saad, D. (eds.) Advanced Mean Field Methods: Theory and Practice, pp. 129-159. MIT Press, Cambridge (2000)
    • (2000) Advanced Mean Field Methods: Theory and Practice , pp. 129-159
    • Jaakkola, T.1
  • 14
    • 0041877169 scopus 로고    scopus 로고
    • Estimation of entropy and mutual information
    • Paninski, L.: Estimation of Entropy and Mutual Information. Neural Computation 15, 1191-1253 (2003)
    • (2003) Neural Computation , vol.15 , pp. 1191-1253
    • Paninski, L.1
  • 15
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency max-relevance, and min-redundancy
    • Peng, H., Long, F., Ding, C.: Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226-1238 (2005)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 17
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • Roweis, S., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(22), 2323-2326 (2000)
    • (2000) Science , vol.290 , Issue.22 , pp. 2323-2326
    • Roweis, S.1    Saul, L.K.2
  • 19
    • 33750733400 scopus 로고    scopus 로고
    • Spectral methods for dimensionality reduction
    • In: Chapelle, O., et al. (eds.), MIT Press, Cambridge
    • Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral Methods for Dimensionality Reduction. In: Chapelle, O., et al. (eds.) Semisupervised Learning, MIT Press, Cambridge (2006)
    • (2006) Semisupervised Learning
    • Saul, L.K.1    Weinberger, K.Q.2    Ham, J.H.3    Sha, F.4    Lee, D.D.5
  • 20
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • Sugiyama, M.: Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. Journal of Machine Learning Research 8, 1027-1061 (2007)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 21
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(22), 2319-2323 (2000)
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.B.1    Silva, V.2    Langford, J.C.3
  • 22
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by nonparametric mutual information maximization
    • Torkkola, K.: Feature Extraction by Nonparametric Mutual Information Maximization. Journal of Machine Learning Research 3, 1415-1438 (2003)
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 25
    • 70349953274 scopus 로고    scopus 로고
    • Discriminative feature selection by nonparametric bayes error minimization
    • to appear
    • Yang, S.H., Hu, B.G.: Discriminative Feature Selection by Nonparametric Bayes Error Minimization. In: Knowledge and Information Systems (KAIS) (to appear)
    • Knowledge and Information Systems (KAIS)
    • Yang, S.H.1    Hu, B.G.2
  • 28
    • 33745456231 scopus 로고    scopus 로고
    • Techincal Report 1530 Department of Computer Sciences University of Wisconsin-Madison
    • Zhu, X.: Semi-Supervised Learning Literature Survey. Techincal Report 1530, Department of Computer Sciences, University of Wisconsin-Madison (2005)
    • (2005) Semi-Supervised Learning Literature Survey
    • Zhu, X.1
  • 29
    • 34547981441 scopus 로고    scopus 로고
    • Spectral feature selection for supervised and unsupervised learning
    • DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
    • Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: Proceeding of the 24th Annual International Conference on Machine Learning (ICML 2007), pp. 1151-1157 (2007) (Pubitemid 47275183)
    • (2007) ACM International Conference Proceeding Series , vol.227 , pp. 1151-1157
    • Zhao, Z.1    Liu, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.