-
3
-
-
36649009540
-
SRDA: An eficient algorithm for large-scale discriminant analysis
-
Cai, D., He, X., Han, J.: SRDA: An Eficient Algorithm for Large-Scale Discriminant Analysis. IEEE Transactions on Knowledge and Data Engineering 20(1), 1-12 (2008)
-
(2008)
IEEE Transactions on Knowledge and Data Engineering
, vol.20
, Issue.1
, pp. 1-12
-
-
Cai, D.1
He, X.2
Han, J.3
-
4
-
-
0038667918
-
Feature extraction based on the bhattacharyya distance
-
Choi, E.: Feature Extraction Based on the Bhattacharyya Distance. Pattern Recognition 36, 1703-1709 (2003)
-
(2003)
Pattern Recognition
, vol.36
, pp. 1703-1709
-
-
Choi, E.1
-
5
-
-
84878031768
-
Statistical challenges with high dimensionality: Feature selection in knowledge discovery
-
Fan, J., Li, R.: Statistical Challenges with High Dimensionality: Feature Selection in Knowledge Discovery. In: Proceeding of Regional Conference in Mathematics (AMS 1996), vol.3, pp. 595-622 (1996)
-
(1996)
Proceeding of Regional Conference in Mathematics (AMS 1996
, vol.3
, pp. 595-622
-
-
Fan, J.1
Li, R.2
-
10
-
-
33746475260
-
Feature extraction using information-theoretic learning
-
Hild II, K.E., Erdogmus, D., Torkkola, K., Principe, C.: Feature Extraction Using Information-Theoretic Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(9), 1385-1392 (2006)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.9
, pp. 1385-1392
-
-
Hild Ii, K.E.1
Erdogmus, D.2
Torkkola, K.3
Principe, C.4
-
11
-
-
4043084564
-
Tutorial on variational approximation methods
-
In: Opper, M., Saad, D. (eds.). MIT Press, Cambridge
-
Jaakkola, T.: Tutorial on Variational Approximation Methods. In: Opper, M., Saad, D. (eds.) Advanced Mean Field Methods: Theory and Practice, pp. 129-159. MIT Press, Cambridge (2000)
-
(2000)
Advanced Mean Field Methods: Theory and Practice
, pp. 129-159
-
-
Jaakkola, T.1
-
14
-
-
0041877169
-
Estimation of entropy and mutual information
-
Paninski, L.: Estimation of Entropy and Mutual Information. Neural Computation 15, 1191-1253 (2003)
-
(2003)
Neural Computation
, vol.15
, pp. 1191-1253
-
-
Paninski, L.1
-
15
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency max-relevance, and min-redundancy
-
Peng, H., Long, F., Ding, C.: Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(8), 1226-1238 (2005)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
16
-
-
0000986833
-
Information theoretic learning
-
In: Haykin, S. (ed.). Wiley, Chichester
-
Principe, J.C., Fisher III, J.W., Xu, D.: Information Theoretic Learning. In: Haykin, S. (ed.) Unsupervised Adaptive Filtering. Wiley, Chichester (2000)
-
(2000)
Unsupervised Adaptive Filtering
-
-
Principe, J.C.1
Fisher Iii, J.W.2
Xu, D.3
-
17
-
-
0034704222
-
Nonlinear Dimensionality Reduction by Locally Linear Embedding
-
Roweis, S., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290(22), 2323-2326 (2000)
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.K.2
-
19
-
-
33750733400
-
Spectral methods for dimensionality reduction
-
In: Chapelle, O., et al. (eds.), MIT Press, Cambridge
-
Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Spectral Methods for Dimensionality Reduction. In: Chapelle, O., et al. (eds.) Semisupervised Learning, MIT Press, Cambridge (2006)
-
(2006)
Semisupervised Learning
-
-
Saul, L.K.1
Weinberger, K.Q.2
Ham, J.H.3
Sha, F.4
Lee, D.D.5
-
20
-
-
34249086815
-
Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
-
Sugiyama, M.: Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis. Journal of Machine Learning Research 8, 1027-1061 (2007)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1027-1061
-
-
Sugiyama, M.1
-
21
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J.B., Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(22), 2319-2323 (2000)
-
(2000)
Science
, vol.290
, Issue.22
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
Silva, V.2
Langford, J.C.3
-
22
-
-
1942450610
-
Feature extraction by nonparametric mutual information maximization
-
Torkkola, K.: Feature Extraction by Nonparametric Mutual Information Maximization. Journal of Machine Learning Research 3, 1415-1438 (2003)
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
23
-
-
14344251006
-
Learning a kernel matrix for nonlinear dimensionality reduction
-
Weinberger, K.Q., Sha, F., Saul, L.K.: Learning a kernel matrix for nonlinear dimensionality reduction. In: Proceedings of the 21st Annual International Confernence on Machine Learning (ICML 2004), pp. 839-846 (2004)
-
(2004)
Proceedings of the 21st Annual International Confernence on Machine Learning (ICML 2004)
, pp. 839-846
-
-
Weinberger, K.Q.1
Sha, F.2
Saul, L.K.3
-
24
-
-
33947194180
-
Graph embedding and extensions: A general framework for dimensionality reduction
-
Yan, S.C., Xu, D., Zhang, B.Y., Zhang, H.J., Yang, Q., Lin, S.: Graph Embedding and Extensions: A General Framework for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(1), 40-51 (2007)
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.1
, pp. 40-51
-
-
Yan, S.C.1
Xu, D.2
Zhang, B.Y.3
Zhang, H.J.4
Yang, Q.5
Lin, S.6
-
25
-
-
70349953274
-
Discriminative feature selection by nonparametric bayes error minimization
-
to appear
-
Yang, S.H., Hu, B.G.: Discriminative Feature Selection by Nonparametric Bayes Error Minimization. In: Knowledge and Information Systems (KAIS) (to appear)
-
Knowledge and Information Systems (KAIS)
-
-
Yang, S.H.1
Hu, B.G.2
-
28
-
-
33745456231
-
-
Techincal Report 1530 Department of Computer Sciences University of Wisconsin-Madison
-
Zhu, X.: Semi-Supervised Learning Literature Survey. Techincal Report 1530, Department of Computer Sciences, University of Wisconsin-Madison (2005)
-
(2005)
Semi-Supervised Learning Literature Survey
-
-
Zhu, X.1
-
29
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
DOI 10.1145/1273496.1273641, Proceedings, Twenty-Fourth International Conference on Machine Learning, ICML 2007
-
Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learning. In: Proceeding of the 24th Annual International Conference on Machine Learning (ICML 2007), pp. 1151-1157 (2007) (Pubitemid 47275183)
-
(2007)
ACM International Conference Proceeding Series
, vol.227
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
|