메뉴 건너뛰기




Volumn 69, Issue 13-15, 2006, Pages 1697-1701

Locally principal component learning for face representation and recognition

Author keywords

Dimensionality reduction; Face recognition; Feature extraction; Locality based learning; Principal component analysis (PCA)

Indexed keywords

DATA STRUCTURES; FEATURE EXTRACTION; KNOWLEDGE REPRESENTATION; LEARNING SYSTEMS; PRINCIPAL COMPONENT ANALYSIS;

EID: 33745213148     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.01.009     Document Type: Article
Times cited : (13)

References (5)
  • 1
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural comput. 15 6 (2003) 1373-1396
    • (2003) Neural comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 2
    • 33745208331 scopus 로고    scopus 로고
    • R. Beveridge, D. Bolme, M. Teixeira, B. Draper, The CSU Face Identification Evaluation System User's Guide: Version 5.0, http://www.cs.colostate.edu/evalfacerec/.
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., and Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 290 5500 (2000) 2323-2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.