메뉴 건너뛰기




Volumn 53, Issue 2, 2008, Pages 517-533

Variational Bayesian functional PCA

Author keywords

[No Author keywords available]

Indexed keywords

AND MODELS; BAYESIAN APPROACHES; ERROR ASSESSMENTS; GENERATIVE MODELS; POSTERIOR DISTRIBUTIONS; REAL DATUMS; VARIATIONAL APPROXIMATIONS; VARIATIONAL BAYESIAN;

EID: 55549102964     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.09.015     Document Type: Article
Times cited : (30)

References (72)
  • 1
    • 39049100940 scopus 로고    scopus 로고
    • Forecasting binary longitudinal data by a functional PC-ARIMA model
    • Aguilera A.M., Escabias M., and Valderrama M.J. Forecasting binary longitudinal data by a functional PC-ARIMA model. Comput. Statist. Data Anal. 52 (2008) 3187-3197
    • (2008) Comput. Statist. Data Anal. , vol.52 , pp. 3187-3197
    • Aguilera, A.M.1    Escabias, M.2    Valderrama, M.J.3
  • 2
    • 32444433406 scopus 로고    scopus 로고
    • Using principal components for estimating logistic regression with high-dimensional multicollinear data
    • Aguilera A.M., Escabias M., and Valderrama M.J. Using principal components for estimating logistic regression with high-dimensional multicollinear data. Comput. Statist. Data Anal. 50 (2006) 1905-1924
    • (2006) Comput. Statist. Data Anal. , vol.50 , pp. 1905-1924
    • Aguilera, A.M.1    Escabias, M.2    Valderrama, M.J.3
  • 3
    • 0033206518 scopus 로고    scopus 로고
    • Stochastic modelling for evolution of stock prices by means of functional principal component analysis
    • Aguilera A.M., Ocaña F.A., and Valderrama M.J. Stochastic modelling for evolution of stock prices by means of functional principal component analysis. Appl. Stoch. Models Bus. Ind. 15 (1999) 227-234
    • (1999) Appl. Stoch. Models Bus. Ind. , vol.15 , pp. 227-234
    • Aguilera, A.M.1    Ocaña, F.A.2    Valderrama, M.J.3
  • 4
    • 0038937979 scopus 로고    scopus 로고
    • Forecasting time series by functional PCA. Discussion of several weighted approaches
    • Aguilera A.M., Ocaña F.A., and Valderrama M.J. Forecasting time series by functional PCA. Discussion of several weighted approaches. Comput. Statist. 14 (1999) 442-467
    • (1999) Comput. Statist. , vol.14 , pp. 442-467
    • Aguilera, A.M.1    Ocaña, F.A.2    Valderrama, M.J.3
  • 5
    • 2542638467 scopus 로고    scopus 로고
    • Forecasting with unequally spaced data by a functional principal component approach
    • Aguilera A.M., Ocaña F.A., and Valderrama M.J. Forecasting with unequally spaced data by a functional principal component approach. Test 8 (1999) 233-253
    • (1999) Test , vol.8 , pp. 233-253
    • Aguilera, A.M.1    Ocaña, F.A.2    Valderrama, M.J.3
  • 6
    • 0031153750 scopus 로고    scopus 로고
    • An approximated principal component prediction model for continuous-time stochastic processes
    • Aguilera A.M., Ocaña F.A., and Valderrama. An approximated principal component prediction model for continuous-time stochastic processes. Appl. Stoch. Models Data Anal. 13 (1997) 61-72
    • (1997) Appl. Stoch. Models Data Anal. , vol.13 , pp. 61-72
    • Aguilera, A.M.1    Ocaña, F.A.2    Valderrama3
  • 7
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias H. Independent factor analysis. Neural Comput. 11 (1998) 803-851
    • (1998) Neural Comput. , vol.11 , pp. 803-851
    • Attias, H.1
  • 8
    • 21644455755 scopus 로고    scopus 로고
    • Hierarchical models for assessing variability among functions
    • Behseta S., Kass R.E., and Wallstrom G.L. Hierarchical models for assessing variability among functions. Biometrika 92 (2005) 419-434
    • (2005) Biometrika , vol.92 , pp. 419-434
    • Behseta, S.1    Kass, R.E.2    Wallstrom, G.L.3
  • 9
    • 55549090088 scopus 로고    scopus 로고
    • Besse, P.C., 1994. Models for multivariate data analysis. In: Dutter R., Grossmann W. (Eds.). COMPSTAT, Proceedings in Computational Statistics. Physica, Heidelberg
    • Besse, P.C., 1994. Models for multivariate data analysis. In: Dutter R., Grossmann W. (Eds.). COMPSTAT, Proceedings in Computational Statistics. Physica, Heidelberg
  • 10
    • 0012270306 scopus 로고
    • Spline functions and optimal metric in linear principal component analysis
    • van Rijckevorsel J.A., and de Leeuw J. (Eds), Wiley, New York
    • Besse P.C. Spline functions and optimal metric in linear principal component analysis. In: van Rijckevorsel J.A., and de Leeuw J. (Eds). Component and Correspondence Analysis (1988), Wiley, New York 81-101
    • (1988) Component and Correspondence Analysis , pp. 81-101
    • Besse, P.C.1
  • 11
    • 0031131610 scopus 로고    scopus 로고
    • Simultaneous nonparametric regressions of unbalanced longitudinal data
    • Besse P., Ferraty F., and Cardot H. Simultaneous nonparametric regressions of unbalanced longitudinal data. Comput. Statist. Data Anal. 24 (1997) 255-270
    • (1997) Comput. Statist. Data Anal. , vol.24 , pp. 255-270
    • Besse, P.1    Ferraty, F.2    Cardot, H.3
  • 12
    • 78651329401 scopus 로고    scopus 로고
    • Bayesian PCA
    • Kearns M.S., Solla S.A., and Cohn D.A. (Eds), MIT Press
    • Bishop C.M. Bayesian PCA. In: Kearns M.S., Solla S.A., and Cohn D.A. (Eds). Advances in Neural Information Processing Systems vol. 11 (1999), MIT Press 382-388
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 382-388
    • Bishop, C.M.1
  • 15
    • 0010741912 scopus 로고    scopus 로고
    • Kernel-based functional principal components
    • Boente G., and Fraiman R. Kernel-based functional principal components. Statist. Probab. Lett. 48 (2000) 335-345
    • (2000) Statist. Probab. Lett. , vol.48 , pp. 335-345
    • Boente, G.1    Fraiman, R.2
  • 16
    • 36049024082 scopus 로고    scopus 로고
    • Functional approach to the random mean of a compound Cox process
    • Bouzas P.R., Ruiz-Fuentes N., and Ocaña F.M. Functional approach to the random mean of a compound Cox process. Comput. Statist. 22 (2007) 467-479
    • (2007) Comput. Statist. , vol.22 , pp. 467-479
    • Bouzas, P.R.1    Ruiz-Fuentes, N.2    Ocaña, F.M.3
  • 18
    • 0001469917 scopus 로고    scopus 로고
    • Nonparametric estimation of smoothed principal components analysis of sampled noisy functions
    • Cardot H. Nonparametric estimation of smoothed principal components analysis of sampled noisy functions. Nonparametric Statist. 12 (2000) 503-533
    • (2000) Nonparametric Statist. , vol.12 , pp. 503-533
    • Cardot, H.1
  • 19
    • 0041459525 scopus 로고    scopus 로고
    • Spline estimators for the functional linear model
    • Cardot H., Ferraty F., and Sarda P. Spline estimators for the functional linear model. Statist. Sinica 13 (2003) 571-591
    • (2003) Statist. Sinica , vol.13 , pp. 571-591
    • Cardot, H.1    Ferraty, F.2    Sarda, P.3
  • 20
    • 55549092850 scopus 로고    scopus 로고
    • Cemgil, A.T., Févotte, C., Godsill, S.J., 2007. Variational and stochastic inference for Bayesian source separation. Engineering Dept., Univ. of Cambridge, preprint
    • Cemgil, A.T., Févotte, C., Godsill, S.J., 2007. Variational and stochastic inference for Bayesian source separation. Engineering Dept., Univ. of Cambridge, preprint
  • 21
    • 34247400715 scopus 로고    scopus 로고
    • Diagnostics for functional regression via residual processes
    • Chiou J.-M., and Müller H.-G. Diagnostics for functional regression via residual processes. Comp. Stat. Data Anal. 51 (2007) 4849-4863
    • (2007) Comp. Stat. Data Anal. , vol.51 , pp. 4849-4863
    • Chiou, J.-M.1    Müller, H.-G.2
  • 22
    • 55549109495 scopus 로고    scopus 로고
    • Choudrey, R.A., Roberts, S.J., 2001. Flexible Bayesian independent component analysis for blind source separation In: 3rd International Conference on Independent Component Analysis and Blind Signal Separation. San Diego, 9-12 Dec., 2001, pp. 90-95
    • Choudrey, R.A., Roberts, S.J., 2001. Flexible Bayesian independent component analysis for blind source separation In: 3rd International Conference on Independent Component Analysis and Blind Signal Separation. San Diego, 9-12 Dec., 2001, pp. 90-95
  • 23
    • 0000957849 scopus 로고
    • Asymptotic theory for the principal component analysis of a random vector function: Some application to statistical inference
    • Dauxois J., Pousse A., and Romain Y. Asymptotic theory for the principal component analysis of a random vector function: Some application to statistical inference. J. Multiv. Anal. 12 (1982) 136-154
    • (1982) J. Multiv. Anal. , vol.12 , pp. 136-154
    • Dauxois, J.1    Pousse, A.2    Romain, Y.3
  • 24
    • 8644286824 scopus 로고    scopus 로고
    • Emerging issues in longitudinal and functional data analysis. Introduction
    • Davidian M., Lin X., and Wang J.-L. Emerging issues in longitudinal and functional data analysis. Introduction. Statist. Sinica 14 (2004) 613-614
    • (2004) Statist. Sinica , vol.14 , pp. 613-614
    • Davidian, M.1    Lin, X.2    Wang, J.-L.3
  • 26
    • 12444303319 scopus 로고    scopus 로고
    • Modeling environmental data by functional principal component logistic regression
    • Escabias M., Aguilera A.M., and Valderrama M.J. Modeling environmental data by functional principal component logistic regression. Environmetrics 16 (2005) 95-107
    • (2005) Environmetrics , vol.16 , pp. 95-107
    • Escabias, M.1    Aguilera, A.M.2    Valderrama, M.J.3
  • 27
    • 2542635673 scopus 로고    scopus 로고
    • Principal component estimation of functional logistic regression: Discussion of two different approaches
    • Escabias M., Aguilera A.M., and Valderrama M.J. Principal component estimation of functional logistic regression: Discussion of two different approaches. Nonparametric Statist. 16 (2004) 365-384
    • (2004) Nonparametric Statist. , vol.16 , pp. 365-384
    • Escabias, M.1    Aguilera, A.M.2    Valderrama, M.J.3
  • 30
    • 33745697473 scopus 로고    scopus 로고
    • Blind separation of sparse sources using Jeffreys' inverse prior and the EM algorithm
    • ICA and Blind Signal Separation. Rosca J., et al. (Ed), Springer, Berlin
    • Févotte C., and Godsill S.J. Blind separation of sparse sources using Jeffreys' inverse prior and the EM algorithm. In: Rosca J., et al. (Ed). ICA and Blind Signal Separation. Lect. Notes in Comp. Sci. vol. 3889 (2006), Springer, Berlin 593-600
    • (2006) Lect. Notes in Comp. Sci. , vol.3889 , pp. 593-600
    • Févotte, C.1    Godsill, S.J.2
  • 31
    • 33746211333 scopus 로고    scopus 로고
    • Free-knot spline smoothing for functional data
    • Gervini D. Free-knot spline smoothing for functional data. J. Roy. Statist. Soc. B68 (2006) 671-687
    • (2006) J. Roy. Statist. Soc. , vol.B68 , pp. 671-687
    • Gervini, D.1
  • 33
    • 33747153005 scopus 로고    scopus 로고
    • Properties of principal component methods for functional and longitudinal data analysis
    • Hall P., Müller H.-G., and Wang J.-L. Properties of principal component methods for functional and longitudinal data analysis. Ann. Statist. 34 (2006) 1493-1517
    • (2006) Ann. Statist. , vol.34 , pp. 1493-1517
    • Hall, P.1    Müller, H.-G.2    Wang, J.-L.3
  • 34
    • 33750436765 scopus 로고    scopus 로고
    • Robust forecasting of mortality and fertility rates: A functional data approach
    • Hyndman R.J., and Ullah M.S. Robust forecasting of mortality and fertility rates: A functional data approach. Comp. Statist. Data Anal. 51 (2007) 4942-4956
    • (2007) Comp. Statist. Data Anal. , vol.51 , pp. 4942-4956
    • Hyndman, R.J.1    Ullah, M.S.2
  • 36
    • 0001699048 scopus 로고    scopus 로고
    • Principal component models for sparse functional data
    • James G.M., Hastie T.J., and Sugar C.A. Principal component models for sparse functional data. Biometrika 87 (2000) 587-602
    • (2000) Biometrika , vol.87 , pp. 587-602
    • James, G.M.1    Hastie, T.J.2    Sugar, C.A.3
  • 37
    • 84887505391 scopus 로고
    • Displaying the important features of large collections of similar curves
    • Jones M.C., and Rice J. Displaying the important features of large collections of similar curves. Am. Stat. 46 (1992) 140-145
    • (1992) Am. Stat. , vol.46 , pp. 140-145
    • Jones, M.C.1    Rice, J.2
  • 38
    • 1542678851 scopus 로고    scopus 로고
    • Inference for density families using functional principal component analysis
    • Kneip A., and Utikal K.J. Inference for density families using functional principal component analysis. J. Amer. Statist. Assoc. 96 (2001) 519-532
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 519-532
    • Kneip, A.1    Utikal, K.J.2
  • 39
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • Leng X., and Müller H.-G. Classification using functional data analysis for temporal gene expression data. Bioinformatics 22 (2006) 68-76
    • (2006) Bioinformatics , vol.22 , pp. 68-76
    • Leng, X.1    Müller, H.-G.2
  • 40
    • 0037294763 scopus 로고    scopus 로고
    • PCA-based dimension reduction for splines
    • van der Linde A. PCA-based dimension reduction for splines. Nonparametric Statist. 15 (2003) 77-92
    • (2003) Nonparametric Statist. , vol.15 , pp. 77-92
    • van der Linde, A.1
  • 41
    • 0035614602 scopus 로고    scopus 로고
    • Estimating the smoothing parameter in generalized spline-based regression II: Empirical and fully Bayesian approaches. Experiments with Gibbs sampling in simulated examples
    • van der Linde A. Estimating the smoothing parameter in generalized spline-based regression II: Empirical and fully Bayesian approaches. Experiments with Gibbs sampling in simulated examples. Comput. Statist. 16 (2001) 73-95
    • (2001) Comput. Statist. , vol.16 , pp. 73-95
    • van der Linde, A.1
  • 42
    • 51249165748 scopus 로고
    • Splines from a Bayesian point of view
    • van der Linde A. Splines from a Bayesian point of view. Test 4 (1995) 63-81
    • (1995) Test , vol.4 , pp. 63-81
    • van der Linde, A.1
  • 43
    • 1842539381 scopus 로고    scopus 로고
    • Bayesian model assessment in factor analysis
    • Lopes H.F., and West M. Bayesian model assessment in factor analysis. Statist. Sinica 14 (2004) 41-67
    • (2004) Statist. Sinica , vol.14 , pp. 41-67
    • Lopes, H.F.1    West, M.2
  • 44
    • 34247525583 scopus 로고    scopus 로고
    • Principal component analysis of measures, with emphasis on grain size curves
    • Manté C., Yao A.-F., and Degiovanni C. Principal component analysis of measures, with emphasis on grain size curves. Comput. Statist. Data Anal. 51 (2007) 4969-4983
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 4969-4983
    • Manté, C.1    Yao, A.-F.2    Degiovanni, C.3
  • 46
    • 84899022480 scopus 로고    scopus 로고
    • Automatic choice of dimensionality for PCA
    • Leen T.K., Dieterich T.G., and Tresp V. (Eds), MIT Press
    • Minka T.P. Automatic choice of dimensionality for PCA. In: Leen T.K., Dieterich T.G., and Tresp V. (Eds). Advances in Neural Information Processing Systems vol. 13 (2001), MIT Press 598-604
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 598-604
    • Minka, T.P.1
  • 47
    • 19744371683 scopus 로고    scopus 로고
    • Functional modelling and classification of longitudinal data
    • Müller H.-G. Functional modelling and classification of longitudinal data. Scand. J. Statist. 32 (2005) 223-240
    • (2005) Scand. J. Statist. , vol.32 , pp. 223-240
    • Müller, H.-G.1
  • 48
    • 19744372814 scopus 로고    scopus 로고
    • Generalized functional linear models
    • Müller H.-G., and Stadtmüller U. Generalized functional linear models. Ann. Statist. 33 (2005) 774-805
    • (2005) Ann. Statist. , vol.33 , pp. 774-805
    • Müller, H.-G.1    Stadtmüller, U.2
  • 49
    • 19744375466 scopus 로고    scopus 로고
    • Functional data analysis for sparse longitudinal data
    • Müller H.-G., and Wang J.-L. Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 (2005) 577-590
    • (2005) J. Amer. Statist. Assoc. , vol.100 , pp. 577-590
    • Müller, H.-G.1    Wang, J.-L.2
  • 50
    • 34247373478 scopus 로고    scopus 로고
    • Classifying densities using functional regression trees. Applications in oceanology
    • Nerini D., and Ghattas B. Classifying densities using functional regression trees. Applications in oceanology. Comput. Statist. Data Anal. 51 (2007) 4984-4993
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 4984-4993
    • Nerini, D.1    Ghattas, B.2
  • 51
    • 36049018344 scopus 로고    scopus 로고
    • Computational considerations in functional principal component analysis
    • Ocaña F.A., Aguilera A.M., and Escabias M. Computational considerations in functional principal component analysis. Comput. Statist. 22 (2007) 449-465
    • (2007) Comput. Statist. , vol.22 , pp. 449-465
    • Ocaña, F.A.1    Aguilera, A.M.2    Escabias, M.3
  • 53
    • 0001919174 scopus 로고
    • Some properties of smoothed principal components analysis for functional data
    • Pezzulli S.D., and Silverman B.W. Some properties of smoothed principal components analysis for functional data. Comput. Statist. 8 (1993) 1-16
    • (1993) Comput. Statist. , vol.8 , pp. 1-16
    • Pezzulli, S.D.1    Silverman, B.W.2
  • 57
    • 8644231058 scopus 로고    scopus 로고
    • Functional and longitudinal data analysis: Perspectives on smoothing
    • Rice J.A. Functional and longitudinal data analysis: Perspectives on smoothing. Statist. Sinica 14 (2004) 631-647
    • (2004) Statist. Sinica , vol.14 , pp. 631-647
    • Rice, J.A.1
  • 60
    • 55549110151 scopus 로고    scopus 로고
    • Saporta, G., Costanzo, G.D., Preda, C., 2007. Linear methods for regression and classification with functional data. IASC-ARS special conference, Seoul, 7-8 June, 2007
    • Saporta, G., Costanzo, G.D., Preda, C., 2007. Linear methods for regression and classification with functional data. IASC-ARS special conference, Seoul, 7-8 June, 2007
  • 61
    • 0030537857 scopus 로고    scopus 로고
    • Smoothed functional principal component analysis by choice of norm
    • Silverman B.W. Smoothed functional principal component analysis by choice of norm. Ann. Statist. 24 (1996) 1-24
    • (1996) Ann. Statist. , vol.24 , pp. 1-24
    • Silverman, B.W.1
  • 62
    • 0000858773 scopus 로고
    • Incorporating parametric effects into functional principal components analysis
    • Silverman B.W. Incorporating parametric effects into functional principal components analysis. J. Roy. Statist. Soc. B57 (1995) 673-689
    • (1995) J. Roy. Statist. Soc. , vol.B57 , pp. 673-689
    • Silverman, B.W.1
  • 63
    • 34147171578 scopus 로고    scopus 로고
    • On Bayesian principal component analysis
    • Šmídl V., and Quinn A. On Bayesian principal component analysis. Comput. Stat. Data Anal. 51 (2007) 4101-4123
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 4101-4123
    • Šmídl, V.1    Quinn, A.2
  • 64
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • Tipping M.E., and Bishop C.M. Probabilistic principal component analysis. J. Roy. Statist. Soc. B21 (1999) 611-622
    • (1999) J. Roy. Statist. Soc. , vol.B21 , pp. 611-622
    • Tipping, M.E.1    Bishop, C.M.2
  • 65
    • 27844592624 scopus 로고    scopus 로고
    • Variational inference for Student-t models: Robust Bayesian interpolation and generalized component analysis
    • Tipping M.E., and Lawrence N.D. Variational inference for Student-t models: Robust Bayesian interpolation and generalized component analysis. Neurocomputing 69 (2005) 123-141
    • (2005) Neurocomputing , vol.69 , pp. 123-141
    • Tipping, M.E.1    Lawrence, N.D.2
  • 66
    • 36048956916 scopus 로고    scopus 로고
    • An overview to modelling functional data
    • Valderrama M.J. An overview to modelling functional data. Comput. Statist. 22 (2007) 331-334
    • (2007) Comput. Statist. , vol.22 , pp. 331-334
    • Valderrama, M.J.1
  • 67
    • 2542629545 scopus 로고    scopus 로고
    • Forecasting PC-ARIMA models for functional data
    • Haerdle W., and Roenz B. (Eds), Physica-Verlag, Heidelberg
    • Valderrama M.J., Ocaña F.A., and Aguilera A.M. Forecasting PC-ARIMA models for functional data. In: Haerdle W., and Roenz B. (Eds). Proceedings in Computational Statistics (2002), Physica-Verlag, Heidelberg 25-36
    • (2002) Proceedings in Computational Statistics , pp. 25-36
    • Valderrama, M.J.1    Ocaña, F.A.2    Aguilera, A.M.3
  • 69
    • 33646014240 scopus 로고    scopus 로고
    • Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values
    • Chickering M., and Halpern J. (Eds), AUAI Press
    • Wang B., and Titterington D.M. Convergence and asymptotic normality of variational Bayesian approximations for exponential family models with missing values. In: Chickering M., and Halpern J. (Eds). Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence (2004), AUAI Press
    • (2004) Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence
    • Wang, B.1    Titterington, D.M.2
  • 70
    • 33645031408 scopus 로고    scopus 로고
    • Penalized spline models for functional principal component analysis
    • Yao F., and Lee T.C.M. Penalized spline models for functional principal component analysis. J. Roy. Statist. Soc B68 (2006) 3-25
    • (2006) J. Roy. Statist. Soc , vol.B68 , pp. 3-25
    • Yao, F.1    Lee, T.C.M.2
  • 71
    • 9444274024 scopus 로고    scopus 로고
    • Zhang, Z., Chan, K.L., Kwok, J.T., Yeung, D.-Y., 2004. Bayesian inference on principal component analysis using reversible jump MCMC. In: Proceedings of the 19th National Conference on Artificial Intelligence, AAAI'04. San Jose, California, USA, 25-29 July 2004
    • Zhang, Z., Chan, K.L., Kwok, J.T., Yeung, D.-Y., 2004. Bayesian inference on principal component analysis using reversible jump MCMC. In: Proceedings of the 19th National Conference on Artificial Intelligence, AAAI'04. San Jose, California, USA, 25-29 July 2004
  • 72
    • 8644276476 scopus 로고    scopus 로고
    • The functional data analysis view of longitudinal data
    • Zhao X., Marron J.S., and Wells M.T. The functional data analysis view of longitudinal data. Statist. Sinica 14 (2004) 789-808
    • (2004) Statist. Sinica , vol.14 , pp. 789-808
    • Zhao, X.1    Marron, J.S.2    Wells, M.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.