메뉴 건너뛰기




Volumn 49, Issue 3, 2010, Pages 219-229

An experimental evaluation of boosting methods for classification

Author keywords

Boosting; Classification; Diagnosis of breast tumors; Generalized additive models; Simulation study

Indexed keywords

ARTICLE; BREAST TUMOR; CLINICAL MEDICINE; COMPARATIVE STUDY; FEMALE; FORECASTING; HUMAN; METHODOLOGY; STATISTICAL MODEL; STATISTICS;

EID: 77952337302     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.3414/ME0543     Document Type: Article
Times cited : (15)

References (46)
  • 1
    • 0348225437 scopus 로고    scopus 로고
    • Comparison of fuzzy inference, logistic regression, and classification trees (CART) for the prediction of cervical lymph node metastasis in carcinoma of the tongue
    • Schwarzer G, Nagata T, Mattern D, Schmelzeisen R, Schumacher M. Comparison of fuzzy inference, logistic regression, and classification trees (CART) for the prediction of cervical lymph node metastasis in carcinoma of the tongue. Methods Inf Med 2003; 42 (5): 572-577.
    • (2003) Methods Inf Med , vol.42 , Issue.5 , pp. 572-577
    • Schwarzer, G.1    Nagata, T.2    Mattern, D.3    Schmelzeisen, R.4    Schumacher, M.5
  • 2
    • 33947526434 scopus 로고    scopus 로고
    • Independent component analysis and neural networks applied for classification of malignant, benign and normal tissue in digital mammography
    • Campos LF, Silva AC, Barros AK. Independent component analysis and neural networks applied for classification of malignant, benign and normal tissue in digital mammography. Methods Inf Med 2007; 46 (2): 212-215.
    • (2007) Methods Inf Med , vol.46 , Issue.2 , pp. 212-215
    • Campos, L.F.1    Silva, A.C.2    Barros, A.K.3
  • 3
    • 35349021062 scopus 로고    scopus 로고
    • Using T3 an improved decision tree classifier, for mining stroke-related medical data
    • Tjortjis C, Saraee M, Theodoulidis B, Keane JA. Using T3, an improved decision tree classifier, for mining stroke-related medical data. Methods Inf Med 2007; 46 (5): 523-529.
    • (2007) Methods Inf Med , vol.46 , Issue.5 , pp. 523-529
    • Tjortjis, C.1    Saraee, M.2    Theodoulidis, B.3    Keane, J.A.4
  • 4
    • 34249274970 scopus 로고    scopus 로고
    • Modeling length of stay as an optimized two-class prediction problem
    • Verduijn M, Peek N, Voorbraak V, de Jonge E, de Mol BA. Modeling length of stay as an opti - mized two-class prediction problem. Methods Inf Med 2007; 46 (3): 352-359.
    • (2007) Methods Inf Med , vol.46 , Issue.3 , pp. 352-359
    • Verduijn, M.1    Peek, N.2    Voorbraak, V.3    De Jonge, E.4    De Mol, B.A.5
  • 5
    • 38849145748 scopus 로고    scopus 로고
    • Comparison of classifiers applied to confocal scanning laser ophthalmoscopy data
    • Adler W, Peters A, Lausen B. Comparison of classifiers applied to confocal scanning laser ophthalmoscopy data. Methods Inf Med 2008; 47: 38-46.
    • (2008) Methods Inf Med , vol.47 , pp. 38-46
    • Adler, W.1    Peters, A.2    Lausen, B.3
  • 6
    • 33750203605 scopus 로고    scopus 로고
    • Two models for outcome prediction -a comparison of logistic regression and neural networks
    • Linder R, König IR, Weimar C, Diener HC, Pöppl SJ, Ziegler A. Two models for outcome prediction -a comparison of logistic regression and neural networks. Methods Inf Med 2006; 45 (5): 536-540.
    • (2006) Methods Inf Med , vol.45 , Issue.5 , pp. 536-540
    • Linder, R.1    König, I.R.2    Weimar, C.3    Diener, H.C.4    Pöppl, S.J.5    Ziegler, A.6
  • 7
    • 37349053011 scopus 로고    scopus 로고
    • Accuracy in the diagnostic prediction of acute appendicitis based on the Bayesian network model
    • Sakai S, Kobayashi K, Nakamura J, Toyabe S, Akazawa K. Accuracy in the diagnostic prediction of acute appendicitis based on the Bayesian network model. Methods Inf Med 2007; 46 (6): 723-726.
    • (2007) Methods Inf Med , vol.46 , Issue.6 , pp. 723-726
    • Sakai, S.1    Kobayashi, K.2    Nakamura, J.3    Toyabe, S.4    Akazawa, K.5
  • 9
    • 0031706490 scopus 로고    scopus 로고
    • Use of logistic regression and a classification tree approach for the development of diagnostic rules: Differentiation of benign and malignant breast tumors based on color doppler flow signals
    • Sauerbrei W, Madjar H, Prömpeler HJ. Use of logistic regression and a classification tree approach for the development of diagnostic rules: Differentiation of benign and malignant breast tumors based on color doppler flow signals. Methods Inf Med 1998; 37: 226-234.
    • (1998) Methods Inf Med , vol.37 , pp. 226-234
    • Sauerbrei, W.1    Madjar, H.2    Prömpeler, H.J.3
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees. Machine Learning 2000; 40: 139-157.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 11
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y. Boosting a weak learning algorithm by majority. Information and Computation 1995; 121 (2): 256-285.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 16
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing Classifiers. Annals of Statistics 1998: 26 (3): 801-849. (Pubitemid 128450035)
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • Friedman J, Hastie T, Tibshirani R. Additive logistic regression: A statistical view of boosting. Annals of Statistics 2000; 2: 334-374.
    • (2000) Annals of Statistics , vol.2 , pp. 334-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 19
    • 0003591748 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Department of Statistics Stanford University
    • Friedman J. Greedy function approximation: a gradient boosting machine. Technical Report. Department of Statistics, Stanford University; 1999.
    • (1999) Technical Report
    • Friedman, J.1
  • 20
    • 33750852806 scopus 로고    scopus 로고
    • Comparison of misclassification rates of search partition analysis and other classification methods
    • Marshall RJ. Comparison of misclassification rates of search partition analysis and other classification methods. Statistics in Medicine 2006; 25: 3787-3797.
    • (2006) Statistics in Medicine , vol.25 , pp. 3787-3797
    • Marshall, R.J.1
  • 21
    • 84971357232 scopus 로고
    • Prognostic models: Clinically useful or quickly forgotten?
    • Wyatt JC, Altman DG. Prognostic models: clinically useful or quickly forgotten? British Medical Journal 1995; 311: 1539-1541.
    • (1995) British Medical Journal , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2
  • 22
    • 0041382897 scopus 로고    scopus 로고
    • External validity of predicitve models: A comparison of logistic regression, classification trees, and neural networks
    • Terrin N, Schmid CH, Griffith JL, D'Agostino RB, Sr, Selker HP. External validity of predicitve models: A comparison of logistic regression, classification trees, and neural networks. Journal of Clinical Epidemiology 2003; 56: 721-729.
    • (2003) Journal of Clinical Epidemiology , vol.56 , pp. 721-729
    • Terrin, N.1    Schmid, C.H.2    Griffith, J.L.3    D'agostino, R.B.4    Sr Selker, H.P.5
  • 23
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling
    • with discussion
    • Royston P, Altman D. Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion). Applied Statistics 1994; 43 (3): 429-467.
    • (1994) Applied Statistics , vol.43 , Issue.3 , pp. 429-467
    • Royston, P.1    Altman, D.2
  • 24
    • 0033474286 scopus 로고    scopus 로고
    • Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials
    • Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. Journal of the Royal Statistical Society, Series A 1999; 162: 71-94.
    • (1999) Journal of the Royal Statistical Society, Series A , vol.162 , pp. 71-94
    • Sauerbrei, W.1    Royston, P.2
  • 25
    • 0036425152 scopus 로고    scopus 로고
    • Corrigendum to: Building multivariable prognostic and diagnostic models: Transformation of the predictors by using fractional polynomials
    • Sauerbrei W, Royston P. Corrigendum to: Building multivariable prognostic and diagnostic models: transformation of the predictors by using fractional polynomials. Journal of the Royal Statistical Society, Series A 2002; 165: 399-400.
    • (2002) Journal of the Royal Statistical Society, Series A , vol.165 , pp. 399-400
    • Sauerbrei, W.1    Royston, P.2
  • 27
    • 26844497970 scopus 로고    scopus 로고
    • A comparison of nonparametric error rate estimation methods in classification problems
    • Wehberg S, Schumacher M. A comparison of nonparametric error rate estimation methods in classification problems. Biometrical J 2004; 46: 35-47.
    • (2004) Biometrical J , vol.46 , pp. 35-47
    • Wehberg, S.1    Schumacher, M.2
  • 28
    • 0035530907 scopus 로고    scopus 로고
    • Measuring diagnostic accuracy of statistical prediction rules
    • Hand D. Measuring diagnostic accuracy of statistical prediction rules. Statistica Neerlandica 2000; 53: 3-16.
    • (2000) Statistica Neerlandica , vol.53 , pp. 3-16
    • Hand, D.1
  • 36
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron B. How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association 1986; 394 (1): 461-470.
    • (1986) Journal of the American Statistical Association , vol.394 , Issue.1 , pp. 461-470
    • Efron, B.1
  • 37
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • Molinaro A, Simon R, Pfeiffer R. Prediction error estimation: a comparison of resampling methods. Bioinformatics 2005; 21 (15): 3301-3307.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.1    Simon, R.2    Pfeiffer, R.3
  • 38
    • 0013228784 scopus 로고    scopus 로고
    • Some infinity theory for predictor ensembles
    • Statistics Department University of California at Berkeley
    • Breiman L. Some infinity theory for predictor ensembles. Technical Report 577. Statistics Department, University of California at Berkeley; 2000.
    • (2000) Technical Report 577
    • Breiman, L.1
  • 39
    • 0037186616 scopus 로고    scopus 로고
    • Effect of pruning and early stopping on performance of a boosting ensemble
    • Drucker H. Effect of pruning and early stopping on performance of a boosting ensemble. Computational Statistics & Data Analysis 2002; 38: 393-406.
    • (2002) Computational Statistics & Data Analysis , vol.38 , pp. 393-406
    • Drucker, H.1
  • 41
    • 26444545593 scopus 로고    scopus 로고
    • Process consitency for adaboost
    • Jiang W. Process Consitency for AdaBoost. Annals of Statistics 2004; 32 (1): 13-29.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 13-29
    • Jiang, W.1
  • 42
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • Lugosi G, Vayatis N. On the Bayes-risk consistency of regularized boosting methods. Annals of Statistics 2004; 32 (1): 30-55.
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 43
    • 27844472191 scopus 로고    scopus 로고
    • An empirical comparison of ensemble methods based on classification trees
    • Hamza M, Laroque D. An empirical comparison of ensemble methods based on classification trees. Journal of Statistical Computation and Simulation 2005; 78 (8): 629-643.
    • (2005) Journal of Statistical Computation and Simulation , vol.78 , Issue.8 , pp. 629-643
    • Hamza, M.1    Laroque, D.2
  • 44
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • Dettling M. BagBoosting for tumor classification with gene expression data. Bioinformatics 2004; 20 (18): 3583-3593.
    • (2004) Bioinformatics , vol.20 , Issue.18 , pp. 3583-3593
    • Dettling, M.1
  • 46
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • disc.: 15-34
    • Hand D. Classifier technology and the illusion of progress. Statistical Science 2006; 21: 1-14 (disc.: 15-34).
    • (2006) Statistical Science , vol.21 , pp. 1-14
    • Hand, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.