메뉴 건너뛰기




Volumn 46, Issue 5, 2007, Pages 523-529

Using T3, an improved decision tree classifier, for mining stroke-related medical data

Author keywords

Computer assisted decision making; Decision tree classification; Knowledge based systems; Medical data mining

Indexed keywords

ARTICLE; DECISION TREE; GENERAL PRACTITIONER; HUMAN; MEDICAL DECISION MAKING; MEDICAL INFORMATICS; MEDICAL INFORMATION; PRIORITY JOURNAL; STROKE; WORLD HEALTH ORGANIZATION;

EID: 35349021062     PISSN: 00261270     EISSN: None     Source Type: Journal    
DOI: 10.1160/ME0317     Document Type: Article
Times cited : (24)

References (29)
  • 1
    • 1642366349 scopus 로고    scopus 로고
    • Prediction of Cardiovascular Risk in Hemodialysis Patients by Data Mining
    • Pfaff M, et al. Prediction of Cardiovascular Risk in Hemodialysis Patients by Data Mining. Methods Inf Med 2004; 43: 106-13.
    • (2004) Methods Inf Med , vol.43 , pp. 106-113
    • Pfaff, M.1
  • 2
    • 0034997351 scopus 로고    scopus 로고
    • Data mining for indicators of early mortality in a database of clinical records
    • Richards G, et al. Data mining for indicators of early mortality in a database of clinical records. Artif Intell Med 2001; 22: 215-31.
    • (2001) Artif Intell Med , vol.22 , pp. 215-231
    • Richards, G.1
  • 3
    • 0030651253 scopus 로고    scopus 로고
    • Generalisation and Decision Tree Induction: Efficient Classification in Data Mining
    • Kamber M, et al. Generalisation and Decision Tree Induction: Efficient Classification in Data Mining. In Proc. Int'l Workshop Research Issues Data Engineering (RIDE'97) 1997; pp 111-20.
    • (1997) Proc. Int'l Workshop Research Issues Data Engineering (RIDE'97) , pp. 111-120
    • Kamber, M.1
  • 4
    • 0032630575 scopus 로고    scopus 로고
    • Mining Very Large Databases
    • Ganti V, Gehrke J, Ramakrishnan R. Mining Very Large Databases. IEEE Computer, Special issue on Data Mining, 1999; 32 (8):38-45.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 38-45
    • Ganti, V.1    Gehrke, J.2    Ramakrishnan, R.3
  • 5
    • 0030422272 scopus 로고    scopus 로고
    • Data Mining using MLC++: A Machine Learning Library in C++
    • Kohavi R, Sommerfield D, Dougherty J. Data Mining using MLC++: A Machine Learning Library in C++. Tools with AI, 1996; pp 234-45.
    • (1996) Tools with AI , pp. 234-245
    • Kohavi, R.1    Sommerfield, D.2    Dougherty, J.3
  • 6
    • 77956110745 scopus 로고    scopus 로고
    • T3: An Improved Classification Algorithm for Data Mining
    • Springer-Verlag
    • Tjortjis C, Keane JA. T3: an Improved Classification Algorithm for Data Mining. Lecture Notes Computer Science Series, Springer-Verlag, Vol. 2412, 2002; pp 50-55.
    • (2002) Lecture Notes Computer Science Series , vol.2412 , pp. 50-55
    • Tjortjis, C.1    Keane, J.A.2
  • 7
    • 35348955006 scopus 로고    scopus 로고
    • Auer P, Holte RC, Maass W. Theory and applications of agnostic PAC-learning with small decision trees. In Proc. 12th Int'l Machine Learning Conf 1995; pp 21-9.
    • Auer P, Holte RC, Maass W. Theory and applications of agnostic PAC-learning with small decision trees. In Proc. 12th Int'l Machine Learning Conf 1995; pp 21-9.
  • 8
    • 0031022216 scopus 로고    scopus 로고
    • Case-control study of stroke and the quality of hypertension control in North West England
    • Du X, et al. Case-control study of stroke and the quality of hypertension control in North West England. BMJ 1997; 314: 272.
    • (1997) BMJ , vol.314 , pp. 272
    • Du, X.1
  • 9
    • 0022268038 scopus 로고
    • Monitoring trends in cardiovascular disease and risk factors: The WHO MONICA Project
    • Tunstall-Pedoe H. Monitoring trends in cardiovascular disease and risk factors: the WHO MONICA Project. WHO. Chron 1985; 39: 3-5.
    • (1985) WHO. Chron , vol.39 , pp. 3-5
    • Tunstall-Pedoe, H.1
  • 10
    • 0029880130 scopus 로고    scopus 로고
    • The enigma of the decline in stroke deaths in the United States: The search for an explanation
    • Bonita R, Beaglehole R. The enigma of the decline in stroke deaths in the United States: The search for an explanation. Stroke 1996; 27: 367-70.
    • (1996) Stroke , vol.27 , pp. 367-370
    • Bonita, R.1    Beaglehole, R.2
  • 11
    • 0029794598 scopus 로고    scopus 로고
    • Lifetime cost of stroke in the United States
    • Taylor TN, et al. Lifetime cost of stroke in the United States. Stroke 1996; 27: 1459-66.
    • (1996) Stroke , vol.27 , pp. 1459-1466
    • Taylor, T.N.1
  • 12
    • 0028911783 scopus 로고
    • Stroke incidence, case fatality, and mortality in the WHO MONICA Project
    • Thorvaldsen P, et al. Stroke incidence, case fatality, and mortality in the WHO MONICA Project. Stroke 1995; 26: 361-7.
    • (1995) Stroke , vol.26 , pp. 361-367
    • Thorvaldsen, P.1
  • 13
    • 35348953379 scopus 로고    scopus 로고
    • The Stroke Association, Scriptographic Publ
    • The Stroke Association, Preventing a stroke, Scriptographic Publ., www.stroke.org.uk, 2006.
    • (2006) Preventing a stroke
  • 15
    • 35349023916 scopus 로고    scopus 로고
    • Quinlan JR. C4.5: Programs for ML. Morgan Kaufmann, 1993.
    • Quinlan JR. C4.5: Programs for ML. Morgan Kaufmann, 1993.
  • 17
    • 35348970570 scopus 로고    scopus 로고
    • UCI Machine Learning Repository. http://www. ics.uci.edu/~mlearn/ MLRepository.html data sets converted to MLC++ format, http://www.sgi. com/tech/mlc/db/ (last accessed 12/05).
    • UCI Machine Learning Repository. http://www. ics.uci.edu/~mlearn/ MLRepository.html data sets converted to MLC++ format, http://www.sgi. com/tech/mlc/db/ (last accessed 12/05).
  • 18
    • 0029678894 scopus 로고    scopus 로고
    • Improved Use of Continuous Attributes in C4.5
    • Quinlan JR. Improved Use of Continuous Attributes in C4.5, Journal AI Research 1996; 4: 77-90.
    • (1996) Journal AI Research , vol.4 , pp. 77-90
    • Quinlan, J.R.1
  • 19
    • 35348945009 scopus 로고    scopus 로고
    • last accessed 12/05
    • SGI MLC++ sources, http://www.sgi.com/tech/ mlc/alpha/MLC1.3.1-src.tar.Z (last accessed 12/05).
    • SGI MLC++ sources
  • 22
    • 0347667301 scopus 로고
    • Decision Tree Induction: How effective is the Greedy Heuristic?
    • Murthy S, Saltzberg S. Decision Tree Induction: How effective is the Greedy Heuristic? In: Proc 1st Int'l Conf. KDD and DM 1995; pp 15-61.
    • (1995) Proc 1st Int'l Conf. KDD and DM , pp. 15-61
    • Murthy, S.1    Saltzberg, S.2
  • 23
    • 35348974759 scopus 로고    scopus 로고
    • T3, available at http://www.co.umist.ac.uk/ ~christos/TMiner.exe (last accessed 12/05).
    • T3, available at http://www.co.umist.ac.uk/ ~christos/TMiner.exe (last accessed 12/05).
  • 24
    • 19344364327 scopus 로고    scopus 로고
    • Predicting breast cancer survivability: A comparison of three data mining methods
    • Delen D, et al. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med 2005; 34 (2): 113-27.
    • (2005) Artif Intell Med , vol.34 , Issue.2 , pp. 113-127
    • Delen, D.1
  • 28
    • 0348225437 scopus 로고    scopus 로고
    • Comparison of Fuzzy Inference, Logistic Regression, and Classification Trees (CART). Prediction of Cervical Lymph Node Metastasis in Carcinoma of the Tongue
    • Schwarzer G, et al. Comparison of Fuzzy Inference, Logistic Regression, and Classification Trees (CART). Prediction of Cervical Lymph Node Metastasis in Carcinoma of the Tongue. Methods Inf Med 2003; 42: 572-7.
    • (2003) Methods Inf Med , vol.42 , pp. 572-577
    • Schwarzer, G.1
  • 29
    • 0042836888 scopus 로고    scopus 로고
    • Integrating classification trees with local logistic regression in intensive care prognosis
    • Abu-Hanna A, de Keizer N. Integrating classification trees with local logistic regression in intensive care prognosis. Artif Intell Med 2003; 29: 5-23.
    • (2003) Artif Intell Med , vol.29 , pp. 5-23
    • Abu-Hanna, A.1    de Keizer, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.