메뉴 건너뛰기




Volumn 50, Issue , 2008, Pages

Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations

Author keywords

Corn; Crop parameters; Hyperspectral; Nitrogen; Remote sensing; Support vector machine; Weeds

Indexed keywords

AIRBORNE HYPERSPECTRAL REMOTE SENSING; BIOPHYSICAL PARAMETERS; COMPACT AIRBORNE SPECTROGRAPHIC IMAGER SENSORS; CORN FIELDS; CROP GROWTH; CROSS VALIDATION; DATA SETS; FERTILIZATION RATES; GRAIN YIELD; GRASS CONTROL; HYPERSPECTRAL; HYPERSPECTRAL DATA; HYPERSPECTRAL OBSERVATIONS; LEAF CHLOROPHYLL CONTENT; LEAF GREENNESS; LEAF NITROGEN CONTENT; NARROW WAVEBANDS; PHYSIOLOGICAL PARAMETERS; PLANT HEIGHT; REASONABLE ACCURACY; REFLECTANCE DATA; REGRESSION MODEL; SMALL SIZE; SPAD READINGS; STEPWISE APPROACH; SVM MODEL; TEST DATA; TRAINING DATA SETS;

EID: 77951780947     PISSN: 14929058     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (51)

References (41)
  • 1
    • 0004140522 scopus 로고
    • Anderson, J.A. and E. Rosenfeld (editors). Cambridge, MA: MIT Press
    • Anderson, J.A. and E. Rosenfeld (editors). 1988. Neurocomputing: Foundations of Research. Cambridge, MA: MIT Press.
    • (1988) Neurocomputing: Foundations of Research
  • 2
    • 2242475747 scopus 로고    scopus 로고
    • An indicator of solar radiation model performance based on a fuzzy expert system
    • Bellocchi, G., M. Acutis, G. Fila and M. Donatelli. 2002. An indicator of solar radiation model performance based on a fuzzy expert system. Agronomy Journal 94:1222-1233. (Pubitemid 35381188)
    • (2002) Agronomy Journal , vol.94 , Issue.6 , pp. 1222-1233
    • Bellocchi, G.1    Acutis, M.2    Fila, G.3    Donatelli, M.4
  • 4
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray, M. and D. Han. 2004. Identification of support vector machines for runoff modeling. Journal of Hydroinformatics 6(4): 265-280.
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.4 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 5
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C.J.C. 1998. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2:121-167. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 6
    • 2942601555 scopus 로고    scopus 로고
    • Support Vector Machines for predicting protein structural class
    • DOI 10.1186/1471-2105-2-3
    • Cai, Y.-D., X.J. Liu, X. Xu and G.P. Zhou. 2001. Support vector machines for predicting protein structural class. Bioinformatics 2:3. (Pubitemid 38751161)
    • (2001) BMC Bioinformatics , vol.2 , pp. 3
    • Cai, Y.-D.1    Liu, X.-J.2    Xu, X.-B.3    Zhou, G.-P.4
  • 9
    • 0002221560 scopus 로고    scopus 로고
    • Overview of development in precision weed management, issues and future directions being considered in Europe
    • eds. R.W. Medd and J.E. Pratley. Adelaide, NSW, Australia: NSW Department of Primary Industries
    • Christensen, S., E. Nordbo, T. Heisel and A.M. Walter. 1998. Overview of development in precision weed management, issues and future directions being considered in Europe. In Precision Weed Management in Crops and Pasture. Proceedings of a Workshop, eds. R.W. Medd and J.E. Pratley. Adelaide, NSW, Australia: NSW Department of Primary Industries.
    • (1998) Precision Weed Management in Crops and Pasture. Proceedings of a Workshop
    • Christensen, S.1    Nordbo, E.2    Heisel, T.3    Walter, A.M.4
  • 10
  • 12
    • 1842864019 scopus 로고    scopus 로고
    • Shape extraction and classification of pizza base using computer vision
    • Du, C.J. and D.W. Sun. 2004. Shape extraction and classification of pizza base using computer vision. Journal of Food Engineering 64: 489-496.
    • (2004) Journal of Food Engineering , vol.64 , pp. 489-496
    • Du, C.J.1    Sun, D.W.2
  • 13
    • 0037235008 scopus 로고    scopus 로고
    • Irene: A software to evaluate model performance
    • DOI 10.1016/S1161-0301(02)00129-6, PII S1161030102001296
    • Fila, G., G. Bellocchi, M. Acutis and M. Donatelli. 2003. IRENE: A software to evaluate model performance. European Journal of Agronomy 18: 369-372. (Pubitemid 36101024)
    • (2003) European Journal of Agronomy , vol.18 , Issue.3-4 , pp. 369-372
    • Fila, G.1    Bellocchi, G.2    Acutis, M.3    Donatelli, M.4
  • 14
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey, T.S., N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer and D. Haussler. 2000. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10): 906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 15
    • 0242383459 scopus 로고    scopus 로고
    • SVM regression through variational methods and its sequential implementation
    • Gao, J.B., S.R. Gunn and C.J. Harris. 2003. SVM regression through variational methods and its sequential implementation. Neurocomputing 55: 151- 167.
    • (2003) Neurocomputing , vol.55 , pp. 151-167
    • Gao, J.B.1    Gunn, S.R.2    Harris, C.J.3
  • 16
    • 0242287210 scopus 로고    scopus 로고
    • Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing
    • Goel, P.K., S.O. Prasher, J.A. Landry, R.M. Patel, A.A. Viau and J.R. Miller. 2003. Estimation of crop biophysical parameters through airborne and field hyperspectral remote sensing. Transactions of the ASAE 46(4): 1235-1246.
    • (2003) Transactions of the ASAE , vol.46 , Issue.4 , pp. 1235-1246
    • Goel, P.K.1    Prasher, S.O.2    Landry, J.A.3    Patel, R.M.4    Viau, A.A.5    Miller, J.R.6
  • 17
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Gualtieri, J.A. and R.F. Cromp. 1998. Support vector machines for hyperspectral remote sensing classification. Proceedings of the SPIE 3584: 221-232.
    • (1998) Proceedings of the SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 18
    • 0003425664 scopus 로고    scopus 로고
    • Technical report. Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of Southampton, Southampton, England
    • Gunn, S. 1998. Support vector machines for classification and regression. Technical report. Faculty of Engineering, Science and Mathematics, School of Electronics and Computer Science, University of Southampton, Southampton, England.
    • (1998) Support Vector Machines for Classification and Regression
    • Gunn, S.1
  • 19
    • 0031106095 scopus 로고    scopus 로고
    • Biomass retrieval from high-dimensional active/passive remote sensing data by using artificial neural networks
    • Jin, Y.-Q. and C. Liu. 1997. Biomass retrieval from high- dimensional active/passive remote sensing data by using artificial neural networks. International Journal of Remote Sensing 18(4): 971-979. (Pubitemid 27269978)
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 971-979
    • Jin, Y.-Q.1    Liu, C.2
  • 20
    • 0031182518 scopus 로고    scopus 로고
    • Inversion of a forest backscatter model using neural networks
    • Kimes, D.S., K.J. Ranson and G. Sun. 1997. Inversion of a forest backscatter model using neural networks. International Journal of Remote Sensing 18(10): 2181-2199. (Pubitemid 127564087)
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.10 , pp. 2181-2199
    • Kimes, D.S.1    Ranson, K.J.2    Sun, G.3
  • 21
    • 0032552629 scopus 로고    scopus 로고
    • Review article: Attribute of neural networks for extracting continuous vegetation variables from optical and radar measurements
    • Kimes, D.S., R.F. Nelson, M.T. Manry and A.K. Fung. 1998. Review article: Attribute of neural networks for extracting continuous vegetation variables from optical and radar measurements. International Journal of Remote Sensing 19(14): 2639-2663.
    • (1998) International Journal of Remote Sensing , vol.19 , Issue.14 , pp. 2639-2663
    • Kimes, D.S.1    Nelson, R.F.2    Manry, M.T.3    Fung, A.K.4
  • 22
    • 0034063646 scopus 로고    scopus 로고
    • Comparing simulated and measured values using mean squared deviation and its components
    • Kobayashi, K. and M.U. Salam. 2000. Comparing simulated and measured values using mean squared deviation and its components. Agronomy Journal 92: 345-352. (Pubitemid 30308637)
    • (2000) Agronomy Journal , vol.92 , Issue.2 , pp. 345-352
    • Kobayashi, K.1    Salam, M.U.2
  • 23
    • 33744935010 scopus 로고    scopus 로고
    • Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy
    • Kovalenko, I.V., G.R Rippke and C.R. Hurburgh. 2006. Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. Journal of Agricultural & Food Chemistry 54(10): 3485-3491.
    • (2006) Journal of Agricultural & Food Chemistry , vol.54 , Issue.10 , pp. 3485-3491
    • Kovalenko, I.V.1    Rippke, G.R.2    Hurburgh, C.R.3
  • 24
    • 33749625953 scopus 로고    scopus 로고
    • SVM approach for predicting LogP
    • DOI 10.1007/s11030-006-9036-2
    • Liao, Q., J. Yao and S. Yuan. 2006. SVM approach for predicting LogP. Molecular Diversity 10(3): 301-309. (Pubitemid 44546684)
    • (2006) Molecular Diversity , vol.10 , Issue.3 , pp. 301-309
    • Liao, Q.1    Yao, J.2    Yuan, S.3
  • 25
    • 34547224599 scopus 로고    scopus 로고
    • Predicting protein N-glycosylation by combining functional domain and secretion information
    • Li, S., B. Liu, Y.R. Cai and Y. Li. 2007. Predicting protein N-glycosylation by combining functional domain and secretion information. Journal of Biomolecular Structure & Dynamics 25(1) 49-54. (Pubitemid 47124366)
    • (2007) Journal of Biomolecular Structure and Dynamics , vol.25 , Issue.1 , pp. 49-54
    • Li, S.1    Liu, B.2    Cai, Y.3    Li, Y.4
  • 26
    • 33747449778 scopus 로고    scopus 로고
    • On multicollinearity and concurvity in some nonlinear multivariate models
    • DOI 10.1007/s10260-006-0005-9
    • Morlini I. 2006. On multicollinearity and concurvity in some nonlinear multivariate models. Statistical Methods and Applications 15: 3-26. (Pubitemid 44257111)
    • (2006) Statistical Methods and Applications , vol.15 , Issue.1 , pp. 3-26
    • Morlini, I.1
  • 27
    • 0031375732 scopus 로고    scopus 로고
    • Nonlinear prediction of chaotic time series using support vector machines
    • Mukherjee, S., E. Osuna and F. Girosi. 1997. Nonlinear prediction of chaotic time series using support vector machines. In Proceeding of the 1997 IEEE Workshop, 511-520.
    • (1997) Proceeding of the 1997 IEEE Workshop , pp. 511-520
    • Mukherjee, S.1    Osuna, E.2    Girosi, F.3
  • 29
    • 1542609551 scopus 로고    scopus 로고
    • Support vector machine classification on the web
    • DOI 10.1093/bioinformatics/btg461
    • Pavlidis, P., I. Wapinski and W.S. Noble. 2004. Support vector machine classification on the web. Bioinformatics 20 (4): 586-587. (Pubitemid 38344342)
    • (2004) Bioinformatics , vol.20 , Issue.4 , pp. 586-587
    • Pavlidis, P.1    Wapinski, I.2    Noble, W.S.3
  • 30
    • 0028584639 scopus 로고
    • Application of an artificial neural network in canopy scattering inversion
    • Pierce, L.E., K. Sarabandi and F.T. Ulaby. 1994. Application of an artificial neural network in canopy scattering inversion. International Journal of Remote Sensing 15(16): 3263-3270.
    • (1994) International Journal of Remote Sensing , vol.15 , Issue.16 , pp. 3263-3270
    • Pierce, L.E.1    Sarabandi, K.2    Ulaby, F.T.3
  • 32
    • 0037332941 scopus 로고    scopus 로고
    • Novel computational tools in bakery process data analysis: A comparative study
    • DOI 10.1016/S0260-8774(02)00221-2, PII S0260877402002212
    • Rousu, J., L. Flander, M. Suutarinen, K. Autio, P. Kontkanen and A. Rantanen. 2003. Novel computational tools in bakery process data analysis: A comparative study. Journal of Food Engineering 57 (1): 45-56. (Pubitemid 35433490)
    • (2003) Journal of Food Engineering , vol.57 , Issue.1 , pp. 45-56
    • Rousu, J.1    Flander, L.2    Suutarinen, M.3    Autio, K.4    Kontkanen, P.5    Rantanen, A.6
  • 34
    • 0027664618 scopus 로고
    • LAI inversion using a back-propagation neural network trained with multiple scattering model
    • Smith, J.A. 1993. LAI inversion using a back-propagation neural network trained with multiple scattering model. IEEE Transactions on Geoscience and Remote Sensing 31(5):1102-1106.
    • (1993) IEEE Transactions on Geoscience and Remote Sensing , vol.31 , Issue.5 , pp. 1102-1106
    • Smith, J.A.1
  • 36
    • 0033970477 scopus 로고    scopus 로고
    • Hyperspectral vegetation indices and their relationships with agricultural crop characteristics
    • Thenkabail, P.S., R.B. Smith and E.D. Pauw. 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing Environment 71(2): 158-182.
    • (2000) Remote Sensing Environment , vol.71 , Issue.2 , pp. 158-182
    • Thenkabail, P.S.1    Smith, R.B.2    Pauw, E.D.3
  • 37
    • 0030618921 scopus 로고    scopus 로고
    • Assessing corn yield and nitrogen uptake variability with digitized aerial infrared photographs
    • Tomer, M.D., J.L. Anderson and J.A. Lamb. 1997. Assessing corn yield and nitrogen uptake variability with digitized aerial infrared photographs. Photogrammetric Engineering & Remote Sensing 63(3): 299-306. (Pubitemid 27164825)
    • (1997) Photogrammetric Engineering and Remote Sensing , vol.63 , Issue.3 , pp. 299-306
    • Tomer, M.D.1    Anderson, J.L.2    Lamb, J.A.3
  • 40
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Zien, A., G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer and K.R. Müller. 2000. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 16 (9): 799-807.
    • (2000) Bioinformatics , vol.16 , Issue.9 , pp. 799-807
    • Zien, A.1    Ratsch, G.2    Mika, S.3    Scholkopf, B.4    Lengauer, T.5    Müller, K.R.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.