메뉴 건너뛰기




Volumn 10, Issue 3, 2006, Pages 301-309

SVM approach for predicting LogP

Author keywords

LogP prediction; Multiple linear regression (MLR); Partial least squares (PLS); Support vector machines (SVM)

Indexed keywords

AROMATIC COMPOUND; BROMINE; CHLORINE; FLUORINE; HYDROGEN; IODINE; NITROGEN; OCTANOL; PHOSPHORUS; SULFUR; WATER;

EID: 33749625953     PISSN: 13811991     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11030-006-9036-2     Document Type: Article
Times cited : (34)

References (33)
  • 1
    • 0029845112 scopus 로고    scopus 로고
    • Calculation procedures for molecular lipophilicity: A comparative study
    • Mannhold, R. and Dross, K., Calculation procedures for molecular lipophilicity: a comparative study, Quant. Struct.-Act. Relat., 15 (1996) 403-409.
    • (1996) Quant. Struct.-Act. Relat. , vol.15 , pp. 403-409
    • Mannhold, R.1    Dross, K.2
  • 2
    • 0033820354 scopus 로고    scopus 로고
    • The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples
    • Testa, B., Crivori, P., Reist, M. and Carrupt, P.A., The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples, Perspect. Drug Disc. Design, 19 (2000) 179-211.
    • (2000) Perspect. Drug Disc. Design , vol.19 , pp. 179-211
    • Testa, B.1    Crivori, P.2    Reist, M.3    Carrupt, P.A.4
  • 3
    • 34447521097 scopus 로고
    • Correlation of biochemical activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients
    • Hansch, C. and Fujita, T., Correlation of biochemical activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients, Nature, 194 (1962) 178-180.
    • (1962) Nature , vol.194 , pp. 178-180
    • Hansch, C.1    Fujita, T.2
  • 4
    • 24544469216 scopus 로고
    • oct from structures
    • oct from structures, Chem. Rev., 93 (1993) 1281-1306.
    • (1993) Chem. Rev. , vol.93 , pp. 1281-1306
    • Leo, A.1
  • 5
    • 0025439652 scopus 로고
    • Automatic logP estimation based on combined additive modeling methods
    • Suzuki, T. and Kudo, Y., Automatic logP estimation based on combined additive modeling methods, J. Comput.-Aided Mol. Des., 4 (1990) 155-198.
    • (1990) J. Comput.-Aided Mol. Des. , vol.4 , pp. 155-198
    • Suzuki, T.1    Kudo, Y.2
  • 6
    • 0028464119 scopus 로고
    • Computer automated logP calculations based on an extended group contribution approach
    • Klopman, G., Li, J.Y., Wang, S. and Dimayuga, M., Computer automated logP calculations based on an extended group contribution approach, J. Chem. Inf. Comput. Sci., 34 (1994) 752-781.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 752-781
    • Klopman, G.1    Li, J.Y.2    Wang, S.3    Dimayuga, M.4
  • 7
    • 0000262640 scopus 로고    scopus 로고
    • A new atom-additive method for calculating partition coefficients
    • Wang, R., Fu, Y. and Lai, L., A new atom-additive method for calculating partition coefficients, J. Chem. Inf. Comput. Sci., 37 (1997) 615-621.
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 615-621
    • Wang, R.1    Fu, Y.2    Lai, L.3
  • 8
    • 0032123548 scopus 로고    scopus 로고
    • Autocorrelation modeling of lipophilicity with a back-propagation neural network
    • Devillers, J., Domine, D. and Guillon, C., Autocorrelation modeling of lipophilicity with a back-propagation neural network, Eur. J. Med. Chem., 33 (1998) 659-664.
    • (1998) Eur. J. Med. Chem. , vol.33 , pp. 659-664
    • Devillers, J.1    Domine, D.2    Guillon, C.3
  • 9
    • 0038443475 scopus 로고    scopus 로고
    • Substructure versus whole molecule approaches for calculating logP
    • Mannhold, R. and Petrauskas, A., Substructure versus whole molecule approaches for calculating logP, QSAR Comb. Sci., 22 (2003) 466-475.
    • (2003) QSAR Comb. Sci. , vol.22 , pp. 466-475
    • Mannhold, R.1    Petrauskas, A.2
  • 10
    • 1842639123 scopus 로고    scopus 로고
    • A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption
    • Sun, H., A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption, J. Chem. Inf. Comput. Sci., 44 (2004) 748-757.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 748-757
    • Sun, H.1
  • 11
    • 8644265004 scopus 로고    scopus 로고
    • Analyses of the partition coefficient, logP, using ab initio MO parameter and accessible surface area of solute molecules
    • Chuman, H., Mori, A., Tanaka, H., Yamagami, C. and Fujita, T., Analyses of the partition coefficient, logP, using ab initio MO parameter and accessible surface area of solute molecules, J. Pharm. Sci., 93 (2004) 2681-2697.
    • (2004) J. Pharm. Sci. , vol.93 , pp. 2681-2697
    • Chuman, H.1    Mori, A.2    Tanaka, H.3    Yamagami, C.4    Fujita, T.5
  • 12
    • 18344371385 scopus 로고    scopus 로고
    • A partition coefficient calculation method with the SFED model
    • In, Y., Chai, H.H. and No, K.T., A partition coefficient calculation method with the SFED model, J. Chem. Inf. Model., 45 (2005) 254-263.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 254-263
    • In, Y.1    Chai, H.H.2    No, K.T.3
  • 13
    • 18344376385 scopus 로고    scopus 로고
    • Whole-molecule calculation of logP based on molar volume, hydrogen bonds, and simulated 13C NMR spectra
    • Schnackenberg, L.K. and Beger, R.D., Whole-molecule calculation of logP based on molar volume, hydrogen bonds, and simulated 13C NMR spectra, J. Chem. Inf. Model., 45 (2005) 360-365.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 360-365
    • Schnackenberg, L.K.1    Beger, R.D.2
  • 14
    • 0003991806 scopus 로고    scopus 로고
    • Vapnik, V.N. (Ed.) John Wiley & Sons, New York
    • Vapnik, V.N. (Ed.) Statistical Learning Theory, John Wiley & Sons, New York, 1998.
    • (1998) Statistical Learning Theory
  • 15
    • 0003798635 scopus 로고    scopus 로고
    • Cristianini, N. and Shawe-Taylor, J. (Eds.) Cambridge University Press, Cambridge, UK
    • Cristianini, N. and Shawe-Taylor, J. (Eds.) An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK, 2000.
    • (2000) An Introduction to Support Vector Machines
  • 16
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on Support Vector Machine for pattern recognition
    • Burges, C.J.C., A tutorial on Support Vector Machine for pattern recognition, Data Min. Knowl. Disc., 2 (1998) 121-167.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 17
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support Vector Machines for pharmaceutical data analysis
    • Burbidge, R., Trotter, M., Buxton, B. and Holden, S., Drug design by machine learning: Support Vector Machines for pharmaceutical data analysis, Comput. Chem., 26 (2001) 5-14.
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 18
    • 0036827078 scopus 로고    scopus 로고
    • Prediction of protein retention times in anion-exchange chromatography systems using Support Vector Regression
    • Song, M., Breneman, C.M., Bi, J.; Sukumar, N., Bennett, K.P., Cramer, S. and Tugcu, N., Prediction of protein retention times in anion-exchange chromatography systems using Support Vector Regression, J. Chem. Inf. Comput. Sci., 42 (2002) 1347-1357.
    • (2002) J. Chem. Inf. Comput. Sci. , vol.42 , pp. 1347-1357
    • Song, M.1    Breneman, C.M.2    Bi, J.3    Sukumar, N.4    Bennett, K.P.5    Cramer, S.6    Tugcu, N.7
  • 19
    • 0036632452 scopus 로고    scopus 로고
    • Fragment generation and Support Vector Machines for inducing SARs
    • Kramer, S., Frank, E. and Helma, C., Fragment generation and Support Vector Machines for inducing SARs, SAR QSAR Environ. Res., 13 (2002) 509-523.
    • (2002) SAR QSAR Environ. Res. , vol.13 , pp. 509-523
    • Kramer, S.1    Frank, E.2    Helma, C.3
  • 20
    • 0344254815 scopus 로고    scopus 로고
    • Drug discovery using Support Vector Machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
    • Zernov, V.V., Balakin, K.V., Ivaschenko, A.A., Savchuk, N.P. and Pletnev, I.V., Drug discovery using Support Vector Machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions, J. Chem. Inf. Comput. Sci., 43 (2003) 2048-2056.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 2048-2056
    • Zernov, V.V.1    Balakin, K.V.2    Ivaschenko, A.A.3    Savchuk, N.P.4    Pletnev, I.V.5
  • 21
    • 4043071270 scopus 로고    scopus 로고
    • Comparative study of QSAR/QSPR correlations using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression
    • Yao, X.J., Panaye, A., Doucet, J.P., Zhang, R.S., Chen, H.F., Liu, M.C., Hu, Z.D. and Fan, B.T., Comparative study of QSAR/QSPR correlations using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression, J. Chem. Inf. Comput. Sci., 44 (2004) 1257-1266.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1257-1266
    • Yao, X.J.1    Panaye, A.2    Doucet, J.P.3    Zhang, R.S.4    Chen, H.F.5    Liu, M.C.6    Hu, Z.D.7    Fan, B.T.8
  • 22
    • 13844270855 scopus 로고    scopus 로고
    • Classification of the carcinogenicity of N-nitroso compounds based on Support Vector Machines and Linear Discriminant Analysis
    • Luan, F., Zhang, R.S., Zhao, C.Y., Yao, X.J., Liu, M.C., Hu, Z.D. and Fan, B.T., Classification of the carcinogenicity of N-nitroso compounds based on Support Vector Machines and Linear Discriminant Analysis, Chem. Res. Toxicol., 18 (2005) 198-203.
    • (2005) Chem. Res. Toxicol. , vol.18 , pp. 198-203
    • Luan, F.1    Zhang, R.S.2    Zhao, C.Y.3    Yao, X.J.4    Liu, M.C.5    Hu, Z.D.6    Fan, B.T.7
  • 23
    • 0003452899 scopus 로고
    • Hansch, C., Leo, A. and Hoekman, D. (Eds.) American Chemical Society, Washington, DC
    • Hansch, C., Leo, A. and Hoekman, D. (Eds.) Exploring QSAR: Hydrophobic, Electronic, and Steric Constants, Vol 2, American Chemical Society, Washington, DC, 1995.
    • (1995) Exploring QSAR: Hydrophobic, Electronic, and Steric Constants , vol.2
  • 27
    • 17844369895 scopus 로고    scopus 로고
    • Generalized fragment-substructure based property prediction method
    • Clark, M., Generalized fragment-substructure based property prediction method, J. Chem. Inf. Model, 45 (2005) 30-38.
    • (2005) J. Chem. Inf. Model , vol.45 , pp. 30-38
    • Clark, M.1
  • 29
    • 0003826721 scopus 로고    scopus 로고
    • Eriksson, L., Johansson, E., Kettaneh-Wold, N. and Wold, S. (Ed.) Umetrics Academy: Kinnelon, NJ
    • Eriksson, L., Johansson, E., Kettaneh-Wold, N. and Wold, S. (Ed.) Multi- and Megavariate Data Analysis Principles and Applications, Umetrics Academy: Kinnelon, NJ, 2001.
    • (2001) Multi- and Megavariate Data Analysis Principles and Applications
  • 30
    • 33749611572 scopus 로고    scopus 로고
    • ftp://dasher.wustl.edu/pub/qsar/.
  • 31
    • 0018709674 scopus 로고
    • Chance factors in studies of quantitative structure-activity relationships
    • Topliss, J.G. and Edwards, R.P., Chance factors in studies of quantitative structure-activity relationships, J. Med. Chem., 22 (1979) 1238-1244.
    • (1979) J. Med. Chem. , vol.22 , pp. 1238-1244
    • Topliss, J.G.1    Edwards, R.P.2
  • 32
    • 33749619339 scopus 로고
    • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (Eds.) Cambridge University Press, Cambridge
    • Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (Eds.) Numerical Recipes in C: the Art of Scientific Computing, 2nd Ed., Cambridge University Press, Cambridge, 1995, 676-681.
    • (1995) Numerical Recipes in C: The Art of Scientific Computing, 2nd Ed. , pp. 676-681


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.