메뉴 건너뛰기




Volumn 47, Issue 2 SPEC. ISS., 2004, Pages 211-223

Applications of optimization heuristics to estimation and modelling problems

Author keywords

Modelling; Optimization heuristic

Indexed keywords

COMPUTATIONAL COMPLEXITY; EVOLUTIONARY ALGORITHMS; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; PARAMETER ESTIMATION; PROBLEM SOLVING; STATISTICAL METHODS;

EID: 4444345418     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2003.11.026     Document Type: Article
Times cited : (67)

References (43)
  • 1
    • 4444305178 scopus 로고    scopus 로고
    • A genetic estimation algorithm for parameters of stochastic ordinary differential equations
    • this volume
    • Alcock, J., Burrage, K., 2004. A genetic estimation algorithm for parameters of stochastic ordinary differential equations. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Alcock, J.1    Burrage, K.2
  • 2
    • 0035964961 scopus 로고    scopus 로고
    • Optimal exact experimental designs with correlated errors through a simulated annealing
    • Angelis L., Bora-Senta E., Moyssiadis C. Optimal exact experimental designs with correlated errors through a simulated annealing. Comput. Statist. Data Anal. 37:2001;275-296.
    • (2001) Comput. Statist. Data Anal. , vol.37 , pp. 275-296
    • Angelis, L.1    Bora-Senta, E.2    Moyssiadis, C.3
  • 3
    • 0035963957 scopus 로고    scopus 로고
    • Genetic algorithms for the identification of additive and innovation outliers in time series
    • Baragona R., Battaglia F., Calzini C. Genetic algorithms for the identification of additive and innovation outliers in time series. Comput. Statist. Data Anal. 37:2001;1-12.
    • (2001) Comput. Statist. Data Anal. , vol.37 , pp. 1-12
    • Baragona, R.1    Battaglia, F.2    Calzini, C.3
  • 4
    • 4444310447 scopus 로고    scopus 로고
    • Fitting piecewise linear threshold autoregressive models by means of genetic algorithms
    • this volume
    • Baragona, R., Battaglia, F., Cucina, D., 2004. Fitting piecewise linear threshold autoregressive models by means of genetic algorithms. Comput. Statist. Data Anal.,
    • (2004) Comput. Statist. Data Anal.
    • Baragona, R.1    Battaglia, F.2    Cucina, D.3
  • 5
    • 0242286590 scopus 로고    scopus 로고
    • Integrated squared error estimation of normal mixtures
    • Besbeas P., Morgan B.J.T. Integrated squared error estimation of normal mixtures. Comput. Statist. Data Anal. 44:2004;517-526.
    • (2004) Comput. Statist. Data Anal. , vol.44 , pp. 517-526
    • Besbeas, P.1    Morgan, B.J.T.2
  • 6
    • 4444296418 scopus 로고    scopus 로고
    • Classification of metaheuristics and design of experiments for the analysis of components
    • Intellektik, Technische Universität Darmstadt, Germany
    • Birattari, M., Paquete, L., Stützle, T., Varrentrap, K., 2001. Classification of metaheuristics and design of experiments for the analysis of components. Technical Report AIDA-2001-05. Intellektik, Technische Universität Darmstadt, Germany.
    • (2001) Technical Report , vol.AIDA-2001-05
    • Birattari, M.1    Paquete, L.2    Stützle, T.3    Varrentrap, K.4
  • 7
    • 0000327349 scopus 로고
    • Modular technical change and genetic algorithms
    • Birchenhall C. Modular technical change and genetic algorithms. Comput. Econom. 8:1995;233-253.
    • (1995) Comput. Econom. , vol.8 , pp. 233-253
    • Birchenhall, C.1
  • 8
    • 4444375377 scopus 로고    scopus 로고
    • Computational aspects of algorithms for variable selection in the context of principal components
    • this volume
    • Cadima, J., Cerdeira, J.O., Minhoto, M., 2004. Computational aspects of algorithms for variable selection in the context of principal components. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Cadima, J.1    Cerdeira, J.O.2    Minhoto, M.3
  • 9
    • 0030263980 scopus 로고    scopus 로고
    • Genetic algorithms and their statistical applications: An introduction
    • Chatterjee S., Laudato M., Lynch L.A. Genetic algorithms and their statistical applications. an introduction Comput. Statist. Data Anal. 22:1996;633-651.
    • (1996) Comput. Statist. Data Anal. , vol.22 , pp. 633-651
    • Chatterjee, S.1    Laudato, M.2    Lynch, L.A.3
  • 11
    • 0000253432 scopus 로고
    • An investigation of some properties of an ant algorithm
    • R. Männer, & B. Manderick. Amsterdam: North-Holland
    • Colorni A., Dorigo M., Maniezzio V. An investigation of some properties of an ant algorithm. Männer R., Manderick B. Parallel Problem Solving from Nature. Vol. 2:1992;509-520 North-Holland, Amsterdam.
    • (1992) Parallel Problem Solving from Nature , vol.2 , pp. 509-520
    • Colorni, A.1    Dorigo, M.2    Maniezzio, V.3
  • 12
    • 84952507313 scopus 로고
    • Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features
    • Dorsey B., Mayer W.J. Genetic algorithms for estimation problems with multiple optima, nondifferentiability, and other irregular features. J. Business Econom. Statist. 13:1995;53-66.
    • (1995) J. Business Econom. Statist. , vol.13 , pp. 53-66
    • Dorsey, B.1    Mayer, W.J.2
  • 13
    • 1142280371 scopus 로고    scopus 로고
    • A simulated annealing strategy for the detection of arbitrarily shaped clusters
    • in press
    • Duczmal, L., Assunção, R., 2004. A simulated annealing strategy for the detection of arbitrarily shaped clusters. Comput. Statist. Data Anal., in press.
    • (2004) Comput. Statist. Data Anal.
    • Duczmal, L.1    Assunção, R.2
  • 14
    • 25144482720 scopus 로고
    • Threshold accepting: A general purpose algorithm appearing superior to simulated annealing
    • Dueck G., Scheuer T. Threshold accepting. a general purpose algorithm appearing superior to simulated annealing J. Comput. Phys. 90:1990;161-175.
    • (1990) J. Comput. Phys. , vol.90 , pp. 161-175
    • Dueck, G.1    Scheuer, T.2
  • 15
    • 38249014983 scopus 로고
    • Optimal selection of statistical units: An approach via simulated annealing
    • Ferri M., Piccioni M. Optimal selection of statistical units. an approach via simulated annealing Comput. Statist. Data Anal. 13:1992;47-61.
    • (1992) Comput. Statist. Data Anal. , vol.13 , pp. 47-61
    • Ferri, M.1    Piccioni, M.2
  • 17
    • 0037471364 scopus 로고    scopus 로고
    • A global optimization heuristic for estimating agent based models
    • Gilli M., Winker P. A global optimization heuristic for estimating agent based models. Comput. Statist. Data Anal. 42:2003;299-312.
    • (2003) Comput. Statist. Data Anal. , vol.42 , pp. 299-312
    • Gilli, M.1    Winker, P.2
  • 18
    • 0004215426 scopus 로고    scopus 로고
    • Boston, MA: Kluwer Academic Publishers
    • Glover F., Laguna M. Tabu Search. 1997;Kluwer Academic Publishers, Boston, MA.
    • (1997) Tabu Search
    • Glover, F.1    Laguna, M.2
  • 19
    • 43949152886 scopus 로고
    • Global optimization of statistical functions with simulated annealing
    • Goffe W.L., Ferrier G., Rogers J. Global optimization of statistical functions with simulated annealing. J. Econometrics. 60:1994;65-99.
    • (1994) J. Econometrics , vol.60 , pp. 65-99
    • Goffe, W.L.1    Ferrier, G.2    Rogers, J.3
  • 22
    • 0030085981 scopus 로고    scopus 로고
    • Construction of exact D-optimal designs by tabu search
    • Joo S.J., Bong J.Y. Construction of exact D-optimal designs by tabu search. Comput. Statist. Data Anal. 21:1996;181-191.
    • (1996) Comput. Statist. Data Anal. , vol.21 , pp. 181-191
    • Joo, S.J.1    Bong, J.Y.2
  • 23
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S., Gelatt C., Vecchi M. Optimization by simulated annealing. Science. 220:1983;671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 24
    • 4444337455 scopus 로고    scopus 로고
    • Generation of prediction optimal projection on latent factors by a stochastic search algorithm
    • this volume
    • Luebke, K., Weihs, C., 2004. Generation of prediction optimal projection on latent factors by a stochastic search algorithm. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Luebke, K.1    Weihs, C.2
  • 25
    • 4444361251 scopus 로고    scopus 로고
    • Finding the relevant risk factors for asset pricing. Comput
    • this volume
    • Maringer, D., 2004. Finding the relevant risk factors for asset pricing. Comput. Statist. Data Anal., this volume
    • (2004) Statist. Data Anal.
    • Maringer, D.1
  • 26
    • 0000066781 scopus 로고    scopus 로고
    • The numerical reliability of econometric software
    • McCullough B.D., Vinod H.D. The numerical reliability of econometric software. J. Econom. Literature. 38:1999;633-665.
    • (1999) J. Econom. Literature , vol.38 , pp. 633-665
    • McCullough, B.D.1    Vinod, H.D.2
  • 27
    • 0002345223 scopus 로고    scopus 로고
    • Memetic algorithms: A short introduction
    • R. Männer, & B. Manderick. London: McGraw-Hill
    • Moscato P. Memetic algorithms: a short introduction. Männer R., Manderick B. New Ideas in Optimization. 1999;219-234 McGraw-Hill, London.
    • (1999) New Ideas in Optimization , pp. 219-234
    • Moscato, P.1
  • 28
    • 4444351215 scopus 로고    scopus 로고
    • Discrete support vector decision trees via tabu search
    • this volume
    • Orsenigo, C., Vercellis, C., 2004. Discrete support vector decision trees via tabu search. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Orsenigo, C.1    Vercellis, C.2
  • 29
    • 27844568382 scopus 로고    scopus 로고
    • Metaheuristics: A bibliography
    • Osman I.H., Laporte G. Metaheuristics. a bibliography Ann. Oper. Res. 63:1996;513-623.
    • (1996) Ann. Oper. Res. , vol.63 , pp. 513-623
    • Osman, I.H.1    Laporte, G.2
  • 30
    • 0035965646 scopus 로고    scopus 로고
    • Genetic modelling of multivariate EGARCHX-processes: Evidence on the international asset return signal response mechanism
    • Östermark R. Genetic modelling of multivariate EGARCHX-processes. evidence on the international asset return signal response mechanism Comput. Statist. Data Anal. 38:2001;71-93.
    • (2001) Comput. Statist. Data Anal. , vol.38 , pp. 71-93
    • Östermark, R.1
  • 31
    • 0038683388 scopus 로고    scopus 로고
    • Design of hybrids for the minimum sum-of-squares clustering problem
    • Pacheco J., Valencia O. Design of hybrids for the minimum sum-of-squares clustering problem. Comput. Statist. Data Anal. 43:2003;235-248.
    • (2003) Comput. Statist. Data Anal. , vol.43 , pp. 235-248
    • Pacheco, J.1    Valencia, O.2
  • 32
    • 4444367158 scopus 로고    scopus 로고
    • Clustering financial time series: An application to mutual fund style analysis
    • this volume
    • Pattarin, F., Paterlini, S., Minerva, T., 2004. Clustering financial time series: an application to mutual fund style analysis. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Pattarin, F.1    Paterlini, S.2    Minerva, T.3
  • 34
    • 4444243814 scopus 로고    scopus 로고
    • Technological modelling for graphical models: An approach based on genetic algorithms
    • this volume
    • Roverato, A., Paterlini, S., 2004. Technological modelling for graphical models: an approach based on genetic algorithms. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Roverato, A.1    Paterlini, S.2
  • 35
    • 4444286218 scopus 로고    scopus 로고
    • A hybrid heuristic approach to discrete multi-objective optimization of credit portfolios
    • this volume
    • Schlottmann, F., Seese, D., 2004. A hybrid heuristic approach to discrete multi-objective optimization of credit portfolios. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Schlottmann, F.1    Seese, D.2
  • 37
    • 0036723306 scopus 로고    scopus 로고
    • A taxonomy of hybrid metaheuristics
    • Talbi E.-G. A taxonomy of hybrid metaheuristics. J. Heuristics. 8:2002;541-564.
    • (2002) J. Heuristics , vol.8 , pp. 541-564
    • Talbi, E.-G.1
  • 38
    • 38249008290 scopus 로고
    • Computing the minimum covariance determinant estimator (MCD) by simulated annealing
    • Todorov V. Computing the minimum covariance determinant estimator (MCD) by simulated annealing. Comput. Statist. Data Anal. 14:1992;515-525.
    • (1992) Comput. Statist. Data Anal. , vol.14 , pp. 515-525
    • Todorov, V.1
  • 40
    • 0001567344 scopus 로고
    • Identification of multivariate AR-models by threshold accepting
    • Winker P. Identification of multivariate AR-models by threshold accepting. Comput. Statist. Data Anal. 20:1995;295-307.
    • (1995) Comput. Statist. Data Anal. , vol.20 , pp. 295-307
    • Winker, P.1
  • 42
    • 4444358559 scopus 로고    scopus 로고
    • Experiments with, and on, algorithms for maximum likelihood clustering
    • this volume
    • Woodruff, D.L., Reiners, T., 2004. Experiments with, and on, algorithms for maximum likelihood clustering. Comput. Statist. Data Anal., this volume
    • (2004) Comput. Statist. Data Anal.
    • Woodruff, D.L.1    Reiners, T.2
  • 43
    • 0037185691 scopus 로고    scopus 로고
    • Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models
    • Wu B., Chang C.-L. Using genetic algorithms to parameters. (d,r) estimation for threshold autoregressive models Comput. Statist. Data Anal. 38:2002;315-330.
    • (2002) Comput. Statist. Data Anal. , vol.38 , pp. 315-330
    • Wu, B.1    Chang, C.-L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.