메뉴 건너뛰기




Volumn 161, Issue 13, 2010, Pages 1790-1802

Creating ensembles of classifiers via fuzzy clustering and deflection

Author keywords

Deflection; Ensemble classifier; Fuzzy clustering; Information entropy

Indexed keywords

ADABOOST; BASE CLASSIFIERS; CLASSIFICATION ACCURACY; COMPONENT CLASSIFIERS; DATA SETS; DEFLECTION; DISTRIBUTION CHARACTERISTICS; ENSEMBLE CLASSIFIER; ENSEMBLE CLASSIFIERS; ENSEMBLES OF CLASSIFIERS; GENERALIZATION CAPABILITY; HOT RESEARCH TOPICS; TRAINING DATA; TRAINING DATA SETS;

EID: 77950628261     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2009.11.013     Document Type: Article
Times cited : (44)

References (32)
  • 1
    • 33846069758 scopus 로고    scopus 로고
    • Ensemblator: an ensemble of classifiers for reliable classification of biological data
    • Nanni L., and Lumini A. Ensemblator: an ensemble of classifiers for reliable classification of biological data. Pattern Recognition Letters 28 5 (2007) 622-630
    • (2007) Pattern Recognition Letters , vol.28 , Issue.5 , pp. 622-630
    • Nanni, L.1    Lumini, A.2
  • 2
    • 56349148238 scopus 로고    scopus 로고
    • Ensemble generation and feature selection for the identification of students with learning disabilities
    • Nanni L., and Lumini A. Ensemble generation and feature selection for the identification of students with learning disabilities. Expert Systems with Applications 3 2 (2009) 3896-3900
    • (2009) Expert Systems with Applications , vol.3 , Issue.2 , pp. 3896-3900
    • Nanni, L.1    Lumini, A.2
  • 4
    • 33748419615 scopus 로고    scopus 로고
    • A novel ensemble of classifiers for protein fold recognition
    • Nanni L. A novel ensemble of classifiers for protein fold recognition. Neurocomputing 69 (2006) 2434-2437
    • (2006) Neurocomputing , vol.69 , pp. 2434-2437
    • Nanni, L.1
  • 6
    • 27844503477 scopus 로고    scopus 로고
    • Multihashing, human authentication featuring biometrics data and tokenized random number: a case study FVC2004
    • Maio D., and Nanni L. Multihashing, human authentication featuring biometrics data and tokenized random number: a case study FVC2004. Neurocomputing 69 (2005) 242-249
    • (2005) Neurocomputing , vol.69 , pp. 242-249
    • Maio, D.1    Nanni, L.2
  • 7
    • 77950630312 scopus 로고    scopus 로고
    • Guest editorial, Diversity in multiple classifier systems, Information Fusion 6 (2005) 3-4.
    • Guest editorial, Diversity in multiple classifier systems, Information Fusion 6 (2005) 3-4.
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 29144474640 scopus 로고    scopus 로고
    • FuzzyBagging: a novel ensemble of classifiers
    • Nanni L., and Lumini A. FuzzyBagging: a novel ensemble of classifiers. Pattern Recognition 39 (2006) 488-490
    • (2006) Pattern Recognition , vol.39 , pp. 488-490
    • Nanni, L.1    Lumini, A.2
  • 12
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 6 (2003) 1291-1302
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 13
    • 33144480118 scopus 로고    scopus 로고
    • Optimal ensemble construction via meta-evolutionary ensembles
    • Kim Y., Street W.N., and Menczer F. Optimal ensemble construction via meta-evolutionary ensembles. Expert Systems with Applications 30 (2006) 705-714
    • (2006) Expert Systems with Applications , vol.30 , pp. 705-714
    • Kim, Y.1    Street, W.N.2    Menczer, F.3
  • 14
    • 38349121661 scopus 로고    scopus 로고
    • Genetic algorithm-based feature set partitioning for classification problems
    • Rokach L. Genetic algorithm-based feature set partitioning for classification problems. Pattern Recognition 41 (2008) 1676-1700
    • (2008) Pattern Recognition , vol.41 , pp. 1676-1700
    • Rokach, L.1
  • 15
    • 0006502062 scopus 로고    scopus 로고
    • Randomizing outputs to increase prediction accuracy
    • Technical Report 518, Statistics Department, University of California, URL
    • L. Breiman, Randomizing outputs to increase prediction accuracy, Technical Report 518, Statistics Department, University of California, 1998. URL 〈http://www.boosting.org/papers/Bre98.pdf〉.
    • (1998)
    • Breiman, L.1
  • 16
    • 22844439516 scopus 로고    scopus 로고
    • Switching class labels to generate classification ensembles
    • Martínez-Mu noz G., and Suárez A. Switching class labels to generate classification ensembles. Pattern Recognition 38 (2005) 1483-1494
    • (2005) Pattern Recognition , vol.38 , pp. 1483-1494
    • Martínez-Mu noz, G.1    Suárez, A.2
  • 18
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: a survey and categorization
    • Brown G., Wyatt J., Harris R., and Yao X. Diversity creation methods: a survey and categorization. Information Fusion 6 (2005) 5-20
    • (2005) Information Fusion , vol.6 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 19
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: combining classifiers by bootstrap aggregation
    • Hothorn T., and Lausen B. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognition 36 6 (2003) 1303-1309
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 21
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning 36 1-2 (1999) 105-139
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 23
    • 32044438858 scopus 로고    scopus 로고
    • Classification by evolutionary ensembles
    • Wang X., and Wang H. Classification by evolutionary ensembles. Pattern Recognition 39 (2006) 595-607
    • (2006) Pattern Recognition , vol.39 , pp. 595-607
    • Wang, X.1    Wang, H.2
  • 25
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: a technique for combining boosting and wagging
    • Webb G.I. Multiboosting: a technique for combining boosting and wagging. Machine Learning 40 2 (2000) 159-196
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 28
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: a technique for combining Rotation Forest and AdaBoost
    • Zhang C.X., and Zhang J.-S. RotBoost: a technique for combining Rotation Forest and AdaBoost. Pattern Recognition Letters 29 10 (2008) 1524-1536
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.X.1    Zhang, J.-S.2
  • 29
    • 77950629308 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, 1998.
    • (1998)
    • Blake, C.L.1    Merz, C.J.2
  • 31
    • 77950628093 scopus 로고    scopus 로고
    • R.D. Mckelvey, A Liapunov function for Nash equilibria, Technical Report, California, Institute of Technical Report, California Institute of Technology, 1991.
    • R.D. Mckelvey, A Liapunov function for Nash equilibria, Technical Report, California, Institute of Technical Report, California Institute of Technology, 1991.
  • 32
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 (2003) 181-207
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.