메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Validation of differential gene expression algorithms: Application comparing fold-change estimation to hypothesis testing

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM PERFORMANCE; CONVENTIONAL MODELING; CROSS-VALIDATION METHODS; DIFFERENTIAL GENE EXPRESSIONS; EMPIRICAL BAYES METHOD; NONPARAMETRIC METHODS; SIGNIFICANCE TESTING; STATISTICAL ALGORITHM;

EID: 77949495872     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-63     Document Type: Article
Times cited : (17)

References (48)
  • 1
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: From disarray to consolidation and consensus
    • 10.1038/nrg1749, 16369572
    • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: From disarray to consolidation and consensus. Nature Reviews Genetics 2006, 7:55-65. 10.1038/nrg1749, 16369572.
    • (2006) Nature Reviews Genetics , vol.7 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 2
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97(457):77-86.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-86
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 4
    • 65449124590 scopus 로고    scopus 로고
    • Comparison of small n statistical tests of differential expression applied to microarrays
    • 10.1186/1471-2105-10-45, 2674054, 19192265
    • Murie C, Woody O, Lee AY, Nadon R. Comparison of small n statistical tests of differential expression applied to microarrays. BMC bioinformatics 2009, 10:45. 10.1186/1471-2105-10-45, 2674054, 19192265.
    • (2009) BMC bioinformatics , vol.10 , pp. 45
    • Murie, C.1    Woody, O.2    Lee, A.Y.3    Nadon, R.4
  • 5
    • 23244447197 scopus 로고    scopus 로고
    • Significance testing for small microarray experiments
    • 10.1002/sim.2109, 15889452
    • Kooperberg C, Aragaki A, Strand AD, Olson JM. Significance testing for small microarray experiments. Statistics in medicine 2005, 24(15):2281-2298. 10.1002/sim.2109, 15889452.
    • (2005) Statistics in medicine , vol.24 , Issue.15 , pp. 2281-2298
    • Kooperberg, C.1    Aragaki, A.2    Strand, A.D.3    Olson, J.M.4
  • 6
    • 9144268360 scopus 로고    scopus 로고
    • Empirical evaluation of data transformations and ranking statistics for microarray analysis
    • 10.1093/nar/gkh866, 524279, 15479783, of the Toxicogenomics Research Consortium CM
    • Qin LX, Kerr KF, . of the Toxicogenomics Research Consortium CM Empirical evaluation of data transformations and ranking statistics for microarray analysis. Nucleic acids research 2004, 32(18):5471-5479. 10.1093/nar/gkh866, 524279, 15479783, of the Toxicogenomics Research Consortium CM.
    • (2004) Nucleic acids research , vol.32 , Issue.18 , pp. 5471-5479
    • Qin, L.X.1    Kerr, K.F.2
  • 7
    • 55249097671 scopus 로고    scopus 로고
    • Consolidated strategy for the analysis of microarray spike-in data
    • McCall MN, Irizarry RA. Consolidated strategy for the analysis of microarray spike-in data. Nucleic acids research 2008, 36(17):el08.
    • (2008) Nucleic acids research , vol.36 , Issue.17
    • McCall, M.N.1    Irizarry, R.A.2
  • 9
    • 1542613788 scopus 로고    scopus 로고
    • Confirming microarray data - Is it really necessary?
    • 10.1016/j.ygeno.2003.09.017, 15028276
    • Rockett JC, Hellmann GM. Confirming microarray data - Is it really necessary?. Genomics 2004, 83(4):541-549. 10.1016/j.ygeno.2003.09.017, 15028276.
    • (2004) Genomics , vol.83 , Issue.4 , pp. 541-549
    • Rockett, J.C.1    Hellmann, G.M.2
  • 10
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • 10.1111/1541-0420.00016, 12762450
    • Pepe MS, Longton G, Anderson GL, Schummer M. Selecting differentially expressed genes from microarray experiments. Biometrics 2003, 59:133-142. 10.1111/1541-0420.00016, 12762450.
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.S.1    Longton, G.2    Anderson, G.L.3    Schummer, M.4
  • 11
    • 38349088960 scopus 로고    scopus 로고
    • Reproducibility of microarray data: A further analysis of microarray quality control (MAQC) data
    • Chen JJ, Hsueh HM, Delongchamp RR, Lin CJ, Tsai CA. Reproducibility of microarray data: A further analysis of microarray quality control (MAQC) data. BMC Bioinformatics 2007, 8.
    • (2007) BMC Bioinformatics , vol.8
    • Chen, J.J.1    Hsueh, H.M.2    Delongchamp, R.R.3    Lin, C.J.4    Tsai, C.A.5
  • 12
    • 13244271361 scopus 로고    scopus 로고
    • Determination of the differentially expressed genes in microarray experiments using local FDR
    • 10.1186/1471-2105-5-125, 520755, 15350197
    • Aubert J, Bar-Hen A, Daudin JJ, Robin S. Determination of the differentially expressed genes in microarray experiments using local FDR. BMC Bioinformatics 2004, 5:125. 10.1186/1471-2105-5-125, 520755, 15350197.
    • (2004) BMC Bioinformatics , vol.5 , pp. 125
    • Aubert, J.1    Bar-Hen, A.2    Daudin, J.J.3    Robin, S.4
  • 13
    • 25444434093 scopus 로고    scopus 로고
    • Correction: Determination of the differentially expressed genes in microarray experiments using local FDR (BMC Bioinformatics)
    • Aubert J, Bar-Hen A, Daudin JJ, Robin S. Correction: Determination of the differentially expressed genes in microarray experiments using local FDR (BMC Bioinformatics). BMC Bioinformatics 2005, 6:42.
    • (2005) BMC Bioinformatics , vol.6 , pp. 42
    • Aubert, J.1    Bar-Hen, A.2    Daudin, J.J.3    Robin, S.4
  • 14
    • 33751184390 scopus 로고    scopus 로고
    • Mixture models for detecting differentially expressed genes in microarrays
    • 10.1142/S0129065706000755, 17117496
    • Jones LBT, Bean R, McLachlan GJ, Zhu JXI. Mixture models for detecting differentially expressed genes in microarrays. International journal of neural systems 2006, 16(5):353-362. 10.1142/S0129065706000755, 17117496.
    • (2006) International journal of neural systems , vol.16 , Issue.5 , pp. 353-362
    • Jones, L.B.T.1    Bean, R.2    McLachlan, G.J.3    Zhu, J.X.I.4
  • 15
    • 8844258766 scopus 로고    scopus 로고
    • A mixture model for estimating the local false discovery rate in DNA microarray analysis
    • 10.1093/bioinformatics/bth310, 15145810
    • Liao JG, Lin Y, Selvanayagam ZE, Shih WJ. A mixture model for estimating the local false discovery rate in DNA microarray analysis. Bioinformatics 2004, 20(16):2694-2701. 10.1093/bioinformatics/bth310, 15145810.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2694-2701
    • Liao, J.G.1    Lin, Y.2    Selvanayagam, Z.E.3    Shih, W.J.4
  • 18
    • 33644858587 scopus 로고    scopus 로고
    • Multidimensional local false discovery rate for microarray studies
    • 10.1093/bioinformatics/btk013, 16368770
    • Ploner A, Calza S, Gusnanto A, Pawitan Y. Multidimensional local false discovery rate for microarray studies. Bioinformatics 2006, 22(5):556-565. 10.1093/bioinformatics/btk013, 16368770.
    • (2006) Bioinformatics , vol.22 , Issue.5 , pp. 556-565
    • Ploner, A.1    Calza, S.2    Gusnanto, A.3    Pawitan, Y.4
  • 19
    • 0038156106 scopus 로고    scopus 로고
    • Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values
    • 10.1093/bioinformatics/btg148, 12835267
    • Pounds S, Morris SW. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values. Bioinformatics 2003, 19(10):1236-1242. 10.1093/bioinformatics/btg148, 12835267.
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1236-1242
    • Pounds, S.1    Morris, S.W.2
  • 21
    • 20844431881 scopus 로고    scopus 로고
    • Twilight; a Bioconductor package for estimating the local false discovery rate
    • 10.1093/bioinformatics/bti436, 15817688
    • Scheid S, Spang R. Twilight; a Bioconductor package for estimating the local false discovery rate. Bioinformatics 2005, 21(12):2921-2922. 10.1093/bioinformatics/bti436, 15817688.
    • (2005) Bioinformatics , vol.21 , Issue.12 , pp. 2921-2922
    • Scheid, S.1    Spang, R.2
  • 22
    • 1542784653 scopus 로고    scopus 로고
    • Empirical Bayes Analysis of a Microarray Experiment
    • Efron B, Tibshirani R, Storey JD, Tusher V. Empirical Bayes Analysis of a Microarray Experiment. Am Stat Assoc 2001, 96(456):1151-1160.
    • (2001) Am Stat Assoc , vol.96 , Issue.456 , pp. 1151-1160
    • Efron, B.1    Tibshirani, R.2    Storey, J.D.3    Tusher, V.4
  • 25
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 2004, 3:Article 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3
    • Smyth, G.K.1
  • 26
    • 2142732441 scopus 로고    scopus 로고
    • Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis
    • Efron B. Large-Scale Simultaneous Hypothesis Testing: The Choice of a Null Hypothesis. Journal of the American Statistical Association 2004, 99(465):96-104.
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.465 , pp. 96-104
    • Efron, B.1
  • 27
    • 38949198791 scopus 로고    scopus 로고
    • Size, power and false discovery rates
    • Efron B. Size, power and false discovery rates. Annals of Statistics 2007, 35:1351-1377.
    • (2007) Annals of Statistics , vol.35 , pp. 1351-1377
    • Efron, B.1
  • 28
    • 77949532008 scopus 로고    scopus 로고
    • HighProbability determines which alternative hypotheses are sufficiently probable: Genomic applications include detection of differential gene expression
    • q-bio/0402049.
    • Bickel DR. HighProbability determines which alternative hypotheses are sufficiently probable: Genomic applications include detection of differential gene expression. arXiv 2004, q-bio/0402049..
    • (2004) arXiv
    • Bickel, D.R.1
  • 29
    • 14644402541 scopus 로고    scopus 로고
    • Error-rate and decision-theoretic methods of multiple testing: Which genes have high objective probabilities of differential expression?
    • Bickel DR. Error-rate and decision-theoretic methods of multiple testing: Which genes have high objective probabilities of differential expression?. Statistical Applications in Genetics and Molecular Biology 2004, 3:8.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3 , pp. 8
    • Bickel, D.R.1
  • 30
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • Schwarz G. Estimating the Dimension of a Model. The Annals of Statistics 1978, 6(2):461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 70349119250 scopus 로고
    • Regression and Time Series Model Selection in Small Samples
    • Hurvich CM, Tsai CL. Regression and Time Series Model Selection in Small Samples. Biometrika 1989, 76(2):297-307.
    • (1989) Biometrika , vol.76 , Issue.2 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 34
    • 48849110493 scopus 로고    scopus 로고
    • Correcting the estimated level of differential expression for gene selection bias: Application to a microarray study
    • Bickel DR. Correcting the estimated level of differential expression for gene selection bias: Application to a microarray study. Statistical Applications in Genetics and Molecular Biology 2008, 7:10.
    • (2008) Statistical Applications in Genetics and Molecular Biology , vol.7 , pp. 10
    • Bickel, D.R.1
  • 35
    • 33646918337 scopus 로고    scopus 로고
    • On a fast, robust estimator of the mode: comparisons to other robust estimators with applications
    • Bickel DR, Frhwirth R. On a fast, robust estimator of the mode: comparisons to other robust estimators with applications. Computational Statistics and Data Analysis 2006, 50:3500-3530.
    • (2006) Computational Statistics and Data Analysis , vol.50 , pp. 3500-3530
    • Bickel, D.R.1    Frhwirth, R.2
  • 36
    • 33747344944 scopus 로고    scopus 로고
    • Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data
    • 10.1186/1471-2105-7-359, 1544358, 16872483
    • Jeffery IB, Higgins DG, Culhane AC. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data. BMC Bioinformatics 2006, 7:359. 10.1186/1471-2105-7-359, 1544358, 16872483.
    • (2006) BMC Bioinformatics , vol.7 , pp. 359
    • Jeffery, I.B.1    Higgins, D.G.2    Culhane, A.C.3
  • 38
    • 33745603720 scopus 로고    scopus 로고
    • A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces
    • Ter Braak CJF. A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces. Statistics and Computing 2006, 16(3):239-249.
    • (2006) Statistics and Computing , vol.16 , Issue.3 , pp. 239-249
    • Ter Braak, C.J.F.1
  • 39
    • 33344476119 scopus 로고    scopus 로고
    • Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development
    • 10.1105/tpc.105.036053, 1276022, 16243903
    • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ. Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 2005, 17(11):2954-2965. 10.1105/tpc.105.036053, 1276022, 16243903.
    • (2005) Plant Cell , vol.17 , Issue.11 , pp. 2954-2965
    • Alba, R.1    Payton, P.2    Fei, Z.3    McQuinn, R.4    Debbie, P.5    Martin, G.B.6    Tanksley, S.D.7    Giovannoni, J.J.8
  • 41
    • 34248532878 scopus 로고    scopus 로고
    • Selection of differentially expressed genes in microarray data analysis
    • 10.1038/sj.tpj.6500412, 16940966
    • Chen JJ, Wang SJ, Tsai CA, Lin CJ. Selection of differentially expressed genes in microarray data analysis. Pharmacogenomics Journal 2007, 7(3):212-220. 10.1038/sj.tpj.6500412, 16940966.
    • (2007) Pharmacogenomics Journal , vol.7 , Issue.3 , pp. 212-220
    • Chen, J.J.1    Wang, S.J.2    Tsai, C.A.3    Lin, C.J.4
  • 42
    • 1842507530 scopus 로고    scopus 로고
    • Degrees of differential gene expression: Detecting biologically significant expression differences and estimating their magnitudes
    • 10.1093/bioinformatics/btg468, 15033875
    • Bickel DR. Degrees of differential gene expression: Detecting biologically significant expression differences and estimating their magnitudes. Bioinformatics (Oxford, England) 2004, 20:682-688. 10.1093/bioinformatics/btg468, 15033875.
    • (2004) Bioinformatics (Oxford, England) , vol.20 , pp. 682-688
    • Bickel, D.R.1
  • 43
    • 34548456099 scopus 로고    scopus 로고
    • Estimating the false discovery rate using nonparametric deconvolution
    • 10.1111/j.1541-0420.2006.00736.x, 17825012
    • Wiel MA, Kim KI. Estimating the false discovery rate using nonparametric deconvolution. Biometrics 2007, 63(3):806-815. 10.1111/j.1541-0420.2006.00736.x, 17825012.
    • (2007) Biometrics , vol.63 , Issue.3 , pp. 806-815
    • Wiel, M.A.1    Kim, K.I.2
  • 44
    • 33645059429 scopus 로고    scopus 로고
    • Bayesian modeling of differential gene expression
    • 10.1111/j.1541-0420.2005.00394.x, 16542224
    • Lewin A, Richardson S, Marshall C, Glazier A, Aitman T. Bayesian modeling of differential gene expression. Biometrics 2006, 62:1-9. 10.1111/j.1541-0420.2005.00394.x, 16542224.
    • (2006) Biometrics , vol.62 , pp. 1-9
    • Lewin, A.1    Richardson, S.2    Marshall, C.3    Glazier, A.4    Aitman, T.5
  • 45
    • 36749032690 scopus 로고    scopus 로고
    • Tail posterior probability for inference in pairwise and multiclass gene expression data
    • 10.1111/j.1541-0420.2007.00807.x, 18078482
    • Bochkina N, Richardson S. Tail posterior probability for inference in pairwise and multiclass gene expression data. Biometrics 2007, 63(4):1117-1125. 10.1111/j.1541-0420.2007.00807.x, 18078482.
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1117-1125
    • Bochkina, N.1    Richardson, S.2
  • 46
    • 62549109118 scopus 로고    scopus 로고
    • Testing significance relative to a fold-change threshold is a TREAT
    • 10.1093/bioinformatics/btp053, 2654802, 19176553
    • McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 2009, 25(6):765-771. 10.1093/bioinformatics/btp053, 2654802, 19176553.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 765-771
    • McCarthy, D.J.1    Smyth, G.K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.