메뉴 건너뛰기




Volumn 63, Issue 3, 2007, Pages 806-815

Estimating the false discovery rate using nonparametric deconvolution

Author keywords

Deconvolution; Differential gene expression; Effect size; FDR

Indexed keywords

DECONVOLUTION; GENE EXPRESSION;

EID: 34548456099     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2006.00736.x     Document Type: Article
Times cited : (17)

References (28)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh, A., Eisen, M., Davis, R., et al 2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503 511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1    Eisen, M.2    Davis, R.3    Al, E.4
  • 3
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289 300.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 4
    • 1842507530 scopus 로고    scopus 로고
    • Degrees of differential gene expression: Detecting biologically significant expression differences and estimating their magnitudes
    • Bickel, D. (2004). Degrees of differential gene expression: Detecting biologically significant expression differences and estimating their magnitudes. Bioinformatics 20, 682 688.
    • (2004) Bioinformatics , vol.20 , pp. 682-688
    • Bickel, D.1
  • 5
    • 8844236882 scopus 로고    scopus 로고
    • A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments
    • and
    • Broët, P., Lewin, A., Richardson, S., Dalmasso, C., and Magdelenat, H. (2004). A mixture model-based strategy for selecting sets of genes in multiclass response microarray experiments. Bioinformatics 20, 2562 2571.
    • (2004) Bioinformatics , vol.20 , pp. 2562-2571
    • Broët, P.1    Lewin, A.2    Richardson, S.3    Dalmasso, C.4    Magdelenat, H.5
  • 6
    • 0036435144 scopus 로고    scopus 로고
    • Estimation of integrated squared density derivatives from a contaminated sample
    • Delaigle, A. and Gijbels, I. (2002). Estimation of integrated squared density derivatives from a contaminated sample. Journal of the Royal Statistical Society, Series B 64, 869 886.
    • (2002) Journal of the Royal Statistical Society, Series B , vol.64 , pp. 869-886
    • Delaigle, A.1    Gijbels, I.2
  • 8
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing: The choice of a null hypothesis
    • Efron, B. (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis. Journal of the American Statistical Association 99, 96 104.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 96-104
    • Efron, B.1
  • 11
    • 11244346557 scopus 로고    scopus 로고
    • Variance stabilization applied to microarray data calibration and to the quantification of differential expression
    • and
    • Huber, W., von Heydebreck, A., Sultmann, H., Poustka, A., and Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 1, 1 9.
    • (2002) Bioinformatics , vol.1 , pp. 1-9
    • Huber, W.1    Von Heydebreck, A.2    Sultmann, H.3    Poustka, A.4    Vingron, M.5
  • 12
    • 0035733752 scopus 로고    scopus 로고
    • The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster
    • and
    • Jin, W., Riley, R., Wolfinger, R., White, K., Passador-Gurgel, G., and Gibson, G. (2001). The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics 29, 389 395.
    • (2001) Nature Genetics , vol.29 , pp. 389-395
    • Jin, W.1    Riley, R.2    Wolfinger, R.3    White, K.4    Passador-Gurgel, G.5    Gibson, G.6
  • 13
  • 16
    • 1242323130 scopus 로고    scopus 로고
    • Model-based analysis of oligonucleotide arrays and issues in cDNA microarray analysis
    • and. In. T. Speed. eds. New York: Chapman and Hall.
    • Li, C., Tseng, G., and Wong, W. (2003). Model-based analysis of oligonucleotide arrays and issues in cDNA microarray analysis. In Statistical Analysis of Gene Expression Microarray Data, T. Speed eds 1 34. New York : Chapman and Hall.
    • (2003) Statistical Analysis of Gene Expression Microarray Data , pp. 1-34
    • Li, C.1    Tseng, G.2    Wong, W.3
  • 17
    • 0035827588 scopus 로고    scopus 로고
    • Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12
    • and
    • Long, A., Mangalam, H., Chan, B., Tolleri, L., Hatfield, G., and Baldi, P. (2001). Improved statistical inference from DNA microarray data using analysis of variance and a Bayesian statistical framework. Analysis of global gene expression in Escherichia coli K12. Journal of Biological Chemistry 276, 19937 19944.
    • (2001) Journal of Biological Chemistry , vol.276 , pp. 19937-19944
    • Long, A.1    Mangalam, H.2    Chan, B.3    Tolleri, L.4    Hatfield, G.5    Baldi, P.6
  • 18
    • 0034923013 scopus 로고    scopus 로고
    • On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data
    • and
    • Newton, M., Kendziorski, C., Richmond, C., Blattner, F., and Tsui, K. (2001). On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data. Journal of Computational Biology 8, 37 52.
    • (2001) Journal of Computational Biology , vol.8 , pp. 37-52
    • Newton, M.1    Kendziorski, C.2    Richmond, C.3    Blattner, F.4    Tsui, K.5
  • 19
    • 2142854576 scopus 로고    scopus 로고
    • A mixture model approach to detecting differentially expressed genes with microarray data
    • and
    • Pan, W., Lin, J., and Le, C. (2003). A mixture model approach to detecting differentially expressed genes with microarray data. Functional and Integrative Genomics 3, 117 124.
    • (2003) Functional and Integrative Genomics , vol.3 , pp. 117-124
    • Pan, W.1    Lin, J.2    Le, C.3
  • 20
    • 0037368548 scopus 로고    scopus 로고
    • Selecting differentially expressed genes from microarray experiments
    • and
    • Pepe, M., Longton, G., Anderson, G. L., and Schummer, M. (2003). Selecting differentially expressed genes from microarray experiments. Biometrics 59, 133 142.
    • (2003) Biometrics , vol.59 , pp. 133-142
    • Pepe, M.1    Longton, G.2    Anderson, G.L.3    Schummer, M.4
  • 21
    • 85153218620 scopus 로고    scopus 로고
    • Exploring the information in p-values
    • and. in press.
    • Ruppert, D., Nettleton, D., and Hwang, J. (2006). Exploring the information in p-values. Biometrics, in press.
    • (2006) Biometrics
    • Ruppert, D.1    Nettleton, D.2    Hwang, J.3
  • 23
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical Bayes methods for assessing differential expression in microarray experiments
    • Art. 3.
    • Smyth, G. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, Art. 3.
    • (2004) Statistical Applications in Genetics and Molecular Biology , vol.3
    • Smyth, G.1
  • 24
    • 0345822598 scopus 로고    scopus 로고
    • The positive false discovery rate: A Bayesian interpretation and the q-value
    • Storey, J. (2003). The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of Statistics 31, 2013 2035.
    • (2003) Annals of Statistics , vol.31 , pp. 2013-2035
    • Storey, J.1
  • 25
    • 0034730124 scopus 로고    scopus 로고
    • Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations
    • and
    • Ting Lee, M., Kuo, F., Whitmore, G., and Sklar, J. (2000). Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proceedings of the National Academy of Sciences 97, 9834 9839.
    • (2000) Proceedings of the National Academy of Sciences , vol.97 , pp. 9834-9839
    • Ting Lee, M.1    Kuo, F.2    Whitmore, G.3    Sklar, J.4
  • 26
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • and
    • Tusher, V., Tibshirani, R., and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences 98, 5116 5121.
    • (2001) Proceedings of the National Academy of Sciences , vol.98 , pp. 5116-5121
    • Tusher, V.1    Tibshirani, R.2    Chu, G.3
  • 27
    • 13244265573 scopus 로고    scopus 로고
    • Accuracy of cDNA microarray methods to detect small gene expression changes induced by neuregulin on breast epithelial cells
    • and
    • Yao, B., Rakhade, S., Li, Q., Ahmed, S., Krauss, R., Draghici, S., and Loeb, J. (2004). Accuracy of cDNA microarray methods to detect small gene expression changes induced by neuregulin on breast epithelial cells. BMC Bioinformatics 5, 99.
    • (2004) BMC Bioinformatics , vol.5 , pp. 99
    • Yao, B.1    Rakhade, S.2    Li, Q.3    Ahmed, S.4    Krauss, R.5    Draghici, S.6    Loeb, J.7
  • 28
    • 25644432812 scopus 로고    scopus 로고
    • High throughput screening of co-expressed gene pairs with controlled false discovery rate (FDR) and minimum acceptable strength (MAS)
    • and
    • Zhu, D., Hero, A., Qin, Z., and Swaroop, A. (2005). High throughput screening of co-expressed gene pairs with controlled false discovery rate (FDR) and minimum acceptable strength (MAS). Journal of Computational Biology 12, 1029 1045.
    • (2005) Journal of Computational Biology , vol.12 , pp. 1029-1045
    • Zhu, D.1    Hero, A.2    Qin, Z.3    Swaroop, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.