메뉴 건너뛰기




Volumn 1, Issue 1, 2009, Pages 60-68

Informatics approaches for identifying biologic relationships in time-series data

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS METHODS; BIOLOGIC SYSTEMS; EXPERIMENTAL METHODS; PREDICTIVE MODELS; SINGLE MOLECULE LEVEL; SPATIAL AND TEMPORAL SCALE; TIME COURSE DATUM; TIME-SERIES DATA;

EID: 77949332439     PISSN: 19395116     EISSN: 19390041     Source Type: Journal    
DOI: 10.1002/wnan.12     Document Type: Review
Times cited : (2)

References (53)
  • 1
    • 20044373640 scopus 로고    scopus 로고
    • Transcription-based prediction of response to IFNbeta using supervised computational methods
    • Baranzini SE, Mousavi P, Rio J, Caillier SJ, Stillman A, et al. Transcription-based prediction of response to IFNbeta using supervised computational methods. PLoS Biol 2005, 3:e2.
    • (2005) PLoS Biol , vol.3
    • Baranzini, S.E.1    Mousavi, P.2    Rio, J.3    Caillier, S.J.4    Stillman, A.5
  • 2
    • 0031915896 scopus 로고    scopus 로고
    • Large-scale temporal gene expression mapping of central nervous system development
    • Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, et al. Large-scale temporal gene expression mapping of central nervous system development. Proc Natl Acad Sci U S A 1998, 95:334-339.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 334-339
    • Wen, X.1    Fuhrman, S.2    Michaels, G.S.3    Carr, D.B.4    Smith, S.5
  • 5
    • 0742305866 scopus 로고    scopus 로고
    • Network biology: understanding the cell's functional organization
    • Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5:101-113.
    • (2004) Nat Rev Genet , vol.5 , pp. 101-113
    • Barabasi, A.L.1    Oltvai, Z.N.2
  • 8
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002, 9:67-103.
    • (2002) J Comput Biol , vol.9 , pp. 67-103
    • De Jong, H.1
  • 9
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003, 4:228-235.
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 11
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • Smith VA, Jarvis ED, Hartemink AJ. Evaluating functional network inference using simulations of complex biological systems. Bioinformatics 2002, 18(suppl 1):S216-S224.
    • (2002) Bioinformatics , vol.18 , Issue.1 SUPPL
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 12
    • 0041627865 scopus 로고    scopus 로고
    • Influence of network topology and data collection on network inference
    • Smith VA, Jarvis ED, Hartemink AJ. Influence of network topology and data collection on network inference. Pac Symp Biocomput 2003, 11:164-175.
    • (2003) Pac Symp Biocomput , vol.11 , pp. 164-175
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 13
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman RE. A new approach to linear filtering and prediction problems. J Basic Eng 1960, 82:35-45.
    • (1960) J Basic Eng , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 15
    • 0033723743 scopus 로고    scopus 로고
    • A new approach for the nonlinear transformation of means and covariances in filters and estimators
    • Julier S, Uhlmann J, Durrant-Whyte HF. A new approach for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans Autom Control 2000, 45:477-482.
    • (2000) IEEE Trans Autom Control , vol.45 , pp. 477-482
    • Julier, S.1    Uhlmann, J.2    Durrant-Whyte, H.F.3
  • 16
    • 0041815593 scopus 로고    scopus 로고
    • Nonlinear dynamical system identification from uncertain and indirect measurements
    • Voss HU, Timmer J, Kurths J. Nonlinear dynamical system identification from uncertain and indirect measurements. Int J Bifurcat Chaos 2004, 14:1905-1933.
    • (2004) Int J Bifurcat Chaos , vol.14 , pp. 1905-1933
    • Voss, H.U.1    Timmer, J.2    Kurths, J.3
  • 18
    • 56749164843 scopus 로고    scopus 로고
    • Grammatical immune system evolution for reverse engineering dynamic Bayesian models
    • Mckinney BA, Tian D. Grammatical immune system evolution for reverse engineering dynamic Bayesian models. Cancer Informatics 2008, 6:433-447.
    • (2008) Cancer Informatics , vol.6 , pp. 433-447
    • Mckinney, B.A.1    Tian, D.2
  • 19
    • 0003932731 scopus 로고
    • Temporal Organization in Cells
    • New York: Academic Press
    • Goodwin BC Temporal Organization in Cells. New York: Academic Press; 1963.
    • (1963)
    • Goodwin, B.C.1
  • 20
    • 0002275384 scopus 로고
    • The dynamics of feedback control circuits in biochemical pathways
    • Tyson JJ, Othmer HG. The dynamics of feedback control circuits in biochemical pathways. Prog Theor Biol 1978, 5:1-62.
    • (1978) Prog Theor Biol , vol.5 , pp. 1-62
    • Tyson, J.J.1    Othmer, H.G.2
  • 21
    • 0014649230 scopus 로고
    • Biochemical systems analysis.I. Some mathematical properties of the rate law for the component enzymatic reactions
    • Savageau MA. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 1969, 25:365-369.
    • (1969) J Theor Biol , vol.25 , pp. 365-369
    • Savageau, M.A.1
  • 22
    • 0015231849 scopus 로고
    • Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems
    • Savageau MA. Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature 1971, 229:542-544.
    • (1971) Nature , vol.229 , pp. 542-544
    • Savageau, M.A.1
  • 23
    • 0003735335 scopus 로고
    • Biochemical Systems Analysis: a Study of Function and Design inMolecular Biology
    • Reading, MA: Addison-Wesley
    • Savageau MA Biochemical Systems Analysis: a Study of Function and Design inMolecular Biology. Reading, MA: Addison-Wesley; 1976.
    • (1976)
    • Savageau, M.A.1
  • 24
    • 0004151462 scopus 로고    scopus 로고
    • Computational Analysis of Biochemical Systems: a Practical Guide for Biochemists and Molecular Biologists
    • Cambridge: Cambridge University Press
    • Voit EO Computational Analysis of Biochemical Systems: a Practical Guide for Biochemists and Molecular Biologists. Cambridge: Cambridge University Press; 2000.
    • (2000)
    • Voit, E.O.1
  • 25
    • 4444351989 scopus 로고    scopus 로고
    • Decoupling dynamical systems for pathway identification from metabolic profiles
    • Voit EO, Almeida J. Decoupling dynamical systems for pathway identification from metabolic profiles. Bioinformatics 2004, 20:1670-1681.
    • (2004) Bioinformatics , vol.20 , pp. 1670-1681
    • Voit, E.O.1    Almeida, J.2
  • 26
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and S-system
    • Kikuchi S, Tominaga D, Arita M, Takahashi K, Tomita M. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 2003, 19:643-650.
    • (2003) Bioinformatics , vol.19 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 27
    • 14944363706 scopus 로고    scopus 로고
    • Construction of genetic network using evolutionary algorithm and combined fitness function
    • Shin A, Iba H. Construction of genetic network using evolutionary algorithm and combined fitness function. Genome Inform 2003, 14:94-103.
    • (2003) Genome Inform , vol.14 , pp. 94-103
    • Shin, A.1    Iba, H.2
  • 28
    • 3142617691 scopus 로고    scopus 로고
    • Mathematical and computational techniques to deduce complex biochemical reaction mechanisms
    • Crampin EJ, Schnell S, McSharry PE. Mathematical and computational techniques to deduce complex biochemical reaction mechanisms. Prog Biophys Mol Biol 2004, 86:77-112.
    • (2004) Prog Biophys Mol Biol , vol.86 , pp. 77-112
    • Crampin, E.J.1    Schnell, S.2    McSharry, P.E.3
  • 29
    • 84880012186 scopus 로고    scopus 로고
    • Identifiability of parameters in the output least square formulation
    • In: Walter E: ed. Identifiability of Parametric Models. Tarrtown, NY: Pergamon
    • Chavent G Identifiability of parameters in the output least square formulation. In: Walter E: ed. Identifiability of Parametric Models. Tarrytown, NY: Pergamon; 1987.
    • Chavent, G.1
  • 30
    • 0003577917 scopus 로고
    • Statistical Power Analysis for the Behavioral Sciences
    • 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates
    • Cohen J Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Mahwah, NJ: Lawrence Erlbaum Associates; 1988.
    • (1988)
    • Cohen, J.1
  • 31
    • 0003478714 scopus 로고
    • Robinson DK Data Reduction and Error Analysis for the Physical Sciences
    • 2nd ed. New York: Mcgraw-Hill
    • Bevington PR, Robinson DK Data Reduction and Error Analysis for the Physical Sciences. 2nd ed. New York: Mcgraw-Hill; 1992.
    • (1992)
    • Bevington, P.R.1
  • 32
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: from co-expression clustering to reverse engineering
    • D'haeseleer P, Liang S, Somogui R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 2000, 16:707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogui, R.3
  • 34
    • 4644301730 scopus 로고    scopus 로고
    • A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions
    • Kremling A, Fischer S, Gadkar K, Doyle FJ, Sauter T, et al. A benchmark for methods in reverse engineering and model discrimination: problem formulation and solutions. Genome Res 2004, 14:1773-1785.
    • (2004) Genome Res , vol.14 , pp. 1773-1785
    • Kremling, A.1    Fischer, S.2    Gadkar, K.3    Doyle, F.J.4    Sauter, T.5
  • 36
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • Data Mining, Inference, and Prediction: New York: Springer-Verlag
    • Hastie T, Tibshirani R, Friedman J The Elements of Statistical Learning: Data Mining, Inference, and Prediction: New York: Springer-Verlag; 2003.
    • (2003)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 37
    • 33747603487 scopus 로고    scopus 로고
    • Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways
    • Hua F, Hautaniemi S, Yokoo R, Lauffenburger DA. Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways. J R Soc Interface 2006, 3:515-526.
    • (2006) J R Soc Interface , vol.3 , pp. 515-526
    • Hua, F.1    Hautaniemi, S.2    Yokoo, R.3    Lauffenburger, D.A.4
  • 38
    • 23244467882 scopus 로고    scopus 로고
    • Rewiring of the yeast transcriptional network through the evolution of motif usage
    • Ihmels J, Bergmann S, Gerami-Nejad M, Yanai I, McClellan M, et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 2005, 309:938-940.
    • (2005) Science , vol.309 , pp. 938-940
    • Ihmels, J.1    Bergmann, S.2    Gerami-Nejad, M.3    Yanai, I.4    McClellan, M.5
  • 39
    • 0034644270 scopus 로고    scopus 로고
    • The segment polarity network is a robust developmental module
    • VonDassow G, Meir E, Munro EM, Odell GM. The segment polarity network is a robust developmental module. Nature 2000, 406:188-192.
    • (2000) Nature , vol.406 , pp. 188-192
    • VonDassow, G.1    Meir, E.2    Munro, E.M.3    Odell, G.M.4
  • 40
    • 0043069489 scopus 로고    scopus 로고
    • Drug research: myths, hype and reality
    • Kubinyi H. Drug research: myths, hype and reality. Nat Rev Drug Discov 2003, 2:665-668.
    • (2003) Nat Rev Drug Discov , vol.2 , pp. 665-668
    • Kubinyi, H.1
  • 41
    • 33746778387 scopus 로고    scopus 로고
    • Cytokine expression patterns associated with systemic adverse events following smallpox immunization
    • McKinney BA, Reif DM, Rock MT, Edwards KM, Kingsmore SF, et al. Cytokine expression patterns associated with systemic adverse events following smallpox immunization. J Infect Dis 2006, 194:444-453.
    • (2006) J Infect Dis , vol.194 , pp. 444-453
    • McKinney, B.A.1    Reif, D.M.2    Rock, M.T.3    Edwards, K.M.4    Kingsmore, S.F.5
  • 45
    • 19544379881 scopus 로고    scopus 로고
    • Stochasticity in gene expression: from theories to phenotypes
    • Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 2005, 6:451-464.
    • (2005) Nat Rev Genet , vol.6 , pp. 451-464
    • Kaern, M.1    Elston, T.C.2    Blake, W.J.3    Collins, J.J.4
  • 46
    • 0035193294 scopus 로고    scopus 로고
    • Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations
    • Kepler T, Elston TC. Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys J 2001, 81:3116-3136.
    • (2001) Biophys J , vol.81 , pp. 3116-3136
    • Kepler, T.1    Elston, T.C.2
  • 47
    • 0031029852 scopus 로고    scopus 로고
    • Stochastic mechanisms in gene expression
    • McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 1997, 94:814-819.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 814-819
    • McAdams, H.H.1    Arkin, A.2
  • 48
    • 4544321024 scopus 로고    scopus 로고
    • Modeling and simulation of intracellular dynamics: choosing an appropriate framework
    • Wolkenhauer O, Ullah M, Kolch W, Cho K-W.Modeling and simulation of intracellular dynamics: choosing an appropriate framework. IEEE Trans Nanobiosci 2004, 3:200-207.
    • (2004) IEEE Trans Nanobiosci , vol.3 , pp. 200-207
    • Wolkenhauer, O.1    Ullah, M.2    Kolch, W.3    Cho, K.-W.4
  • 49
    • 44049109914 scopus 로고
    • A rigorous derivation of the chemical master equation
    • Gillespie DT. A rigorous derivation of the chemical master equation. Physica A 1992, 188:404-425.
    • (1992) Physica A , vol.188 , pp. 404-425
    • Gillespie, D.T.1
  • 50
    • 0033083733 scopus 로고    scopus 로고
    • It's a noisy business! Genetic regulation at the nanomolar scale
    • McAdams HH, Arkin A. It's a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 1999, 15:65-69.
    • (1999) Trends Genet , vol.15 , pp. 65-69
    • McAdams, H.H.1    Arkin, A.2
  • 51
    • 0032428151 scopus 로고    scopus 로고
    • Modeling stochastic gene expression: implications for haploinsufficiency
    • Cook DL, Gerber AN, Tapscott SJ. Modeling stochastic gene expression: implications for haploinsufficiency. Proc Natl Acad Sci U S A 1998, 95:15641-15646.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 15641-15646
    • Cook, D.L.1    Gerber, A.N.2    Tapscott, S.J.3
  • 52
    • 0037108809 scopus 로고    scopus 로고
    • Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro
    • Kemkemer R, Schrank S, Vogel W, Gruler H, Kaufmann D. Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci U S A 2002, 99:13783-13788.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 13783-13788
    • Kemkemer, R.1    Schrank, S.2    Vogel, W.3    Gruler, H.4    Kaufmann, D.5
  • 53
    • 33749022748 scopus 로고    scopus 로고
    • How lifetimes shape epigenotype within and across generations
    • Whitelaw NC, Whitelaw E. How lifetimes shape epigenotype within and across generations. Hum Mol Genet 2006, 15(Spec No 2):R131-R137.
    • (2006) Hum Mol Genet , vol.15 , Issue.SPEC. NO 2
    • Whitelaw, N.C.1    Whitelaw, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.