메뉴 건너뛰기




Volumn 99, Issue 3, 2010, Pages 192-200

Stochastic models for inferring genetic regulation from microarray gene expression data

Author keywords

Genetic algorithm; Microarray; Noise; Stochastic differential equation; Stochastic modelling

Indexed keywords

PROTEIN P53;

EID: 77649274950     PISSN: 03032647     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.biosystems.2009.11.002     Document Type: Article
Times cited : (17)

References (43)
  • 1
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
    • Arkin A., Ross J., McAdams H.H. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 1998, 149:1633-1648.
    • (1998) Genetics , vol.149 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 3
    • 22344449669 scopus 로고    scopus 로고
    • Constructing transcriptional regulatory networks
    • Blais A., Dynlacht B.D. Constructing transcriptional regulatory networks. Gene Dev. 2005, 19:1499-1511.
    • (2005) Gene Dev. , vol.19 , pp. 1499-1511
    • Blais, A.1    Dynlacht, B.D.2
  • 4
    • 84984932472 scopus 로고    scopus 로고
    • Exploring the new world of the genome with DNA microarrays
    • Brown P.O., Botstein D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 1999, 21(Suppl):33-37.
    • (1999) Nat. Genet. , vol.21 , Issue.SUPPL. , pp. 33-37
    • Brown, P.O.1    Botstein, D.2
  • 5
    • 33846097712 scopus 로고    scopus 로고
    • Bayesian learning of sparse gene regulatory networks
    • Chan Z., Collins L., Kasabov N. Bayesian learning of sparse gene regulatory networks. BioSystems 2007, 87:299-306.
    • (2007) BioSystems , vol.87 , pp. 299-306
    • Chan, Z.1    Collins, L.2    Kasabov, N.3
  • 6
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen K.C., Wang T.Y., Tseng H.H., Huang C.Y., Kao C.Y. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21:2883-2890.
    • (2005) Bioinformatics , vol.21 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.4    Kao, C.Y.5
  • 8
    • 34548451679 scopus 로고    scopus 로고
    • A Markovian approach to the control of genetic regulatory networks
    • Chen P.C.Y., Chen J.W. A Markovian approach to the control of genetic regulatory networks. BioSystems 2007, 90:535-545.
    • (2007) BioSystems , vol.90 , pp. 535-545
    • Chen, P.C.Y.1    Chen, J.W.2
  • 10
    • 4544318151 scopus 로고    scopus 로고
    • Bayesian hierarchical error model for analysis of gene expression data
    • Cho H., Lee J.K. Bayesian hierarchical error model for analysis of gene expression data. Bioinformatics 2004, 20:2016-2025.
    • (2004) Bioinformatics , vol.20 , pp. 2016-2025
    • Cho, H.1    Lee, J.K.2
  • 11
    • 34547763812 scopus 로고    scopus 로고
    • A stochastic differential equation model for transcriptional regulatory networks
    • Climescu-Haulica A., Quirk M.D. A stochastic differential equation model for transcriptional regulatory networks. BMC Bioinform. 2007, 8(Suppl. 5):S4.
    • (2007) BMC Bioinform. , vol.8 , Issue.SUPPL. 5
    • Climescu-Haulica, A.1    Quirk, M.D.2
  • 12
    • 0036207347 scopus 로고    scopus 로고
    • Modelling and simulation of genetic regulatory systems: a literature review
    • de Jong H. Modelling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 2002, 9:67-103.
    • (2002) J. Comput. Biol. , vol.9 , pp. 67-103
    • de Jong, H.1
  • 13
    • 4444303303 scopus 로고    scopus 로고
    • Adapting genetic regulatory models by genetic programming
    • Eriksson R., Olsson B. Adapting genetic regulatory models by genetic programming. BioSystems 2004, 76:217-227.
    • (2004) BioSystems , vol.76 , pp. 217-227
    • Eriksson, R.1    Olsson, B.2
  • 15
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner T.S., di Bernardo D., Lorenz D., Collins J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 17
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-a review
    • Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: data integration in dynamic models-a review. BioSystems 2009, 96:86-103.
    • (2009) BioSystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 18
    • 33744542889 scopus 로고    scopus 로고
    • Relationship between gene expression and observed intensities in DNA microarrays-a modeling study
    • Held G.A., Grinstein G., Tu Y. Relationship between gene expression and observed intensities in DNA microarrays-a modeling study. Nucleic Acids Res. 2006, 34:e70.
    • (2006) Nucleic Acids Res. , vol.34
    • Held, G.A.1    Grinstein, G.2    Tu, Y.3
  • 19
    • 33644527950 scopus 로고    scopus 로고
    • The model organism as a system: integrating 'omics' data sets
    • Joyce A.R., Palsson B.O. The model organism as a system: integrating 'omics' data sets. Nat. Rev. Mol. Cell Biol. 2006, 7:198-210.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 198-210
    • Joyce, A.R.1    Palsson, B.O.2
  • 20
    • 19544379881 scopus 로고    scopus 로고
    • Stochasticity in gene expression: from theories to phenotypes
    • Kaern M., Elston T.C., Blake W.J., Collins J.J. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 2005, 6:451-464.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 451-464
    • Kaern, M.1    Elston, T.C.2    Blake, W.J.3    Collins, J.J.4
  • 21
    • 0037461033 scopus 로고    scopus 로고
    • Dynamic modeling of genetic networks using genetic algorithm and S-system
    • Kikuchi S., Tominaga D., Arita M., Takahashi K., Tomita M. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics 2003, 19:643-650.
    • (2003) Bioinformatics , vol.19 , pp. 643-650
    • Kikuchi, S.1    Tominaga, D.2    Arita, M.3    Takahashi, K.4    Tomita, M.5
  • 23
    • 33846884998 scopus 로고    scopus 로고
    • Evolving fuzzy rules to model gene expression
    • Linden R., Bhaya A. Evolving fuzzy rules to model gene expression. BioSystems 2007, 88:76-91.
    • (2007) BioSystems , vol.88 , pp. 76-91
    • Linden, R.1    Bhaya, A.2
  • 26
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J. Microarray data normalization and transformation. Nat. Genet. 2002, 32(Suppl):496-501.
    • (2002) Nat. Genet. , vol.32 , Issue.SUPPL. , pp. 496-501
    • Quackenbush, J.1
  • 27
    • 0037078982 scopus 로고    scopus 로고
    • Control, exploitation and tolerance of intracellular noise
    • Rao C.V., Wolf D.M., Arkin A.P. Control, exploitation and tolerance of intracellular noise. Nature 2002, 420:231-237.
    • (2002) Nature , vol.420 , pp. 231-237
    • Rao, C.V.1    Wolf, D.M.2    Arkin, A.P.3
  • 28
    • 0036627676 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses
    • Repsilber D., Liljenström H., Andersson, Siv G.E. Reverse engineering of regulatory networks: simulation studies on a genetic algorithm approach for ranking hypotheses. BioSystems 2002, 66:31-41.
    • (2002) BioSystems , vol.66 , pp. 31-41
    • Repsilber, D.1    Liljenström, H.2    Andersson3    Siv, G.E.4
  • 29
    • 0035684378 scopus 로고    scopus 로고
    • A model for measurement error for gene expression arrays
    • Rocke D.M., Durbin B. A model for measurement error for gene expression arrays. J. Comput. Biol. 2001, 8:557-569.
    • (2001) J. Comput. Biol. , vol.8 , pp. 557-569
    • Rocke, D.M.1    Durbin, B.2
  • 30
    • 34249856850 scopus 로고    scopus 로고
    • Bayesian model-based inference of transcription factor activity
    • Rogers S., Khanin R., Girolami M. Bayesian model-based inference of transcription factor activity. BMC Bioinform. 2007, 8(Suppl. 2):S2.
    • (2007) BMC Bioinform. , vol.8 , Issue.SUPPL. 2
    • Rogers, S.1    Khanin, R.2    Girolami, M.3
  • 31
    • 0036790975 scopus 로고    scopus 로고
    • Intrinsic and extrinsic contributions to stochasticity in gene expression
    • Swain P.S., Elowitz M.B., Siggia E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:12795-12800.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 12795-12800
    • Swain, P.S.1    Elowitz, M.B.2    Siggia, E.D.3
  • 32
    • 33744811457 scopus 로고    scopus 로고
    • Stochastic models for regulatory networks of the genetic toggle switch
    • Tian T., Burrage K. Stochastic models for regulatory networks of the genetic toggle switch. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:8372-8377.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 8372-8377
    • Tian, T.1    Burrage, K.2
  • 33
    • 1442335476 scopus 로고    scopus 로고
    • Bistability and switching in the lysis/lysogeny genetic regulatory network of Bacteriophage lambda
    • Tian T., Burrage K. Bistability and switching in the lysis/lysogeny genetic regulatory network of Bacteriophage lambda. J. Theor. Biol. 2004, 227:229-237.
    • (2004) J. Theor. Biol. , vol.227 , pp. 229-237
    • Tian, T.1    Burrage, K.2
  • 34
    • 0035400420 scopus 로고    scopus 로고
    • Implicit Taylor methods for stiff stochastic differential equations
    • Tian T., Burrage K. Implicit Taylor methods for stiff stochastic differential equations. Appl. Numer. Math. 2001, 38:167-185.
    • (2001) Appl. Numer. Math. , vol.38 , pp. 167-185
    • Tian, T.1    Burrage, K.2
  • 35
    • 33845875759 scopus 로고    scopus 로고
    • Simulated maximum likelihood method for estimating kinetic rates in genetic regulation
    • Tian T., Xu S., Gao J., Burrage K. Simulated maximum likelihood method for estimating kinetic rates in genetic regulation. Bioinformatics 2007, 23:84-91.
    • (2007) Bioinformatics , vol.23 , pp. 84-91
    • Tian, T.1    Xu, S.2    Gao, J.3    Burrage, K.4
  • 36
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu Y., Stolovitzky G., Klein U. Quantitative noise analysis for gene expression microarray experiments. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:14031-14036.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 37
    • 40749094910 scopus 로고    scopus 로고
    • Bayesian ranking of biochemical system models
    • Vyshemirsky V., Girolami M.A. Bayesian ranking of biochemical system models. Bioinformatics 2008, 24:833-839.
    • (2008) Bioinformatics , vol.24 , pp. 833-839
    • Vyshemirsky, V.1    Girolami, M.A.2
  • 38
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • Wahde M., Hertz J. Coarse-grained reverse engineering of genetic regulatory networks. BioSystems 2000, 55:129-136.
    • (2000) BioSystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 39
    • 85194532360 scopus 로고    scopus 로고
    • submitted. Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53
    • Wang, J., Tian, T., submitted. Quantitative model for inferring dynamic regulation of the tumour suppressor gene p53. BMC Bioinform.
    • BMC Bioinform
    • Wang, J.1    Tian, T.2
  • 41
    • 58549110252 scopus 로고    scopus 로고
    • Stochastic modelling for quantitative description of heterogeneous biological systems
    • Wilkinson D.J. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat. Rev. Genet. 2009, 10:122-133.
    • (2009) Nat. Rev. Genet. , vol.10 , pp. 122-133
    • Wilkinson, D.J.1
  • 42
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung M.K., Tegner J., Collins J.J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:6163-6168.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.