-
1
-
-
33747888273
-
Microfluidics in commercial applications; an industry perspective
-
C. Haber, "Microfluidics in commercial applications; an industry perspective," Lab Chip 6(9), 1118-1121 (2006).
-
(2006)
Lab Chip
, vol.6
, Issue.9
, pp. 1118-1121
-
-
Haber, C.1
-
2
-
-
0036643808
-
PDMS-based microfluidic devices for biomedical applications
-
T. Fujii, "PDMS-based microfluidic devices for biomedical applications," Microelectron. Eng. 61-62(1-3), 907-914 (2002).
-
(2002)
Microelectron. Eng
, vol.61-62
, Issue.1-3
, pp. 907-914
-
-
Fujii, T.1
-
3
-
-
23644452355
-
Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding
-
P. Mao, and J. Han, "Fabrication and characterization of 20 nm planar nanofluidic channels by glass-glass and glass-silicon bonding," Lab Chip 5(8), 837-844 (2005).
-
(2005)
Lab Chip
, vol.5
, Issue.8
, pp. 837-844
-
-
Mao, P.1
Han, J.2
-
4
-
-
0037529339
-
Sacrificial polymers for nanofluidic channels in biological applications
-
W. Li, J. O. Tegenfeldt, L. Chen, R. H. Austin, S. Y. Chou, P. A. Kohl, J. Krotine, and J. C. Sturm, "Sacrificial polymers for nanofluidic channels in biological applications," Nanotechnology 14(6), 578-583 (2003).
-
(2003)
Nanotechnology
, vol.14
, Issue.6
, pp. 578-583
-
-
Li, W.1
Tegenfeldt, J.O.2
Chen, L.3
Austin, R.H.4
Chou, S.Y.5
Kohl, P.A.6
Krotine, J.7
Sturm, J.C.8
-
5
-
-
58149308805
-
Sub-10 nm self-enclosed self-limited nanofluidic channel arrays
-
Q. Xia, K. J. Morton, R. H. Austin, and S. Y. Chou, "Sub-10 nm self-enclosed self-limited nanofluidic channel arrays," Nano Lett. 8(11), 3830-3833 (2008).
-
(2008)
Nano Lett
, vol.8
, Issue.11
, pp. 3830-3833
-
-
Xia, Q.1
Morton, K.J.2
Austin, R.H.3
Chou, S.Y.4
-
6
-
-
2442601301
-
Biochemical analysis with microfluidic systems
-
U. Bilitewski, M. Genrich, S. Kadow, and G. Mersal, "Biochemical analysis with microfluidic systems," Anal. Bioanal. Chem. 377(3), 556-569 (2003).
-
(2003)
Anal. Bioanal. Chem
, vol.377
, Issue.3
, pp. 556-569
-
-
Bilitewski, U.1
Genrich, M.2
Kadow, S.3
Mersal, G.4
-
7
-
-
0035505143
-
Fabrication of microchannels using polycarbonates as sacrificial materials
-
H. A. Reed, C. E. White, V. Rao, S. A. B. Allen, C. L. Henderson, and P. A. Kohl, "Fabrication of microchannels using polycarbonates as sacrificial materials," J. Micromech. Microeng. 11(6), 733-737 (2001).
-
(2001)
J. Micromech. Microeng
, vol.11
, Issue.6
, pp. 733-737
-
-
Reed, H.A.1
White, C.E.2
Rao, V.3
Allen, S.A.B.4
Henderson, C.L.5
Kohl, P.A.6
-
8
-
-
60649110738
-
Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate
-
K. Venkatakrishnan, S. Jariwala, and B. Tan, "Maskless fabrication of nano-fluidic channels by two-photon absorption (TPA) polymerization of SU-8 on glass substrate," Opt. Express 17(4), 2756-2762 (2009).
-
(2009)
Opt. Express
, vol.17
, Issue.4
, pp. 2756-2762
-
-
Venkatakrishnan, K.1
Jariwala, S.2
Tan, B.3
-
9
-
-
17444406358
-
Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate
-
L. Shah, A. Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Opt. Express 13(6), 1999-2006 (2005).
-
(2005)
Opt. Express
, vol.13
, Issue.6
, pp. 1999-2006
-
-
Shah, L.1
Arai, A.Y.2
Eaton, S.M.3
Herman, P.R.4
-
10
-
-
0000469932
-
Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures
-
G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, "Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures," Opt. Lett. 23(22), 1745-1747 (1998).
-
(1998)
Opt. Lett
, vol.23
, Issue.22
, pp. 1745-1747
-
-
Witzgall, G.1
Vrijen, R.2
Yablonovitch, E.3
Doan, V.4
Schwartz, B.J.5
-
11
-
-
70350630458
-
Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation
-
S. Jariwala, K. Venkatakrishnan, and B. Tan, "Micro-fluidic channel fabrication via two-photon absorption (TPA) polymerization assisted ablation," J. Micromech. Microeng. 19(11), 115023-115029 (2009).
-
(2009)
J. Micromech. Microeng
, vol.19
, Issue.11
, pp. 115023-115029
-
-
Jariwala, S.1
Venkatakrishnan, K.2
Tan, B.3
-
12
-
-
0041423589
-
Scaling laws of voxels in two-photon photopolymerization nanofabrication
-
H. Sun, K. Takada, M. Kim, K. Lee, and S. Kawata, "Scaling laws of voxels in two-photon photopolymerization nanofabrication," Appl. Phys. Lett. 83(6), 1104-1106 (2003).
-
(2003)
Appl. Phys. Lett
, vol.83
, Issue.6
, pp. 1104-1106
-
-
Sun, H.1
Takada, K.2
Kim, M.3
Lee, K.4
Kawata, S.5
-
13
-
-
77952687254
-
-
N. Uppal, and P. S. Shiakolas, Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics, J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
-
N. Uppal, and P. S. Shiakolas, "Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics," J. Micro-Nanolithogr. Mems and Moems 7(4), 043002 (2008).
-
-
-
-
14
-
-
17544363244
-
Femtosecond laser micromachining of grooves in silicon with 800 nm pulses
-
T. H. R. Crawford, A. Borowiec, and H. K. Haugen, "Femtosecond laser micromachining of grooves in silicon with 800 nm pulses," Appl. Phys. A Mater. Sci. Process. 80(8), 1717-1724 (2005).
-
(2005)
Appl. Phys. A Mater. Sci. Process
, vol.80
, Issue.8
, pp. 1717-1724
-
-
Crawford, T.H.R.1
Borowiec, A.2
Haugen, H.K.3
-
15
-
-
6344267073
-
Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching
-
C. Lee, T. Chang, K. Lee, J. Lin, and J. Wang, "Fabricating high-aspect-ratio sub-diffraction-limit structures on silicon with two-photon photopolymerization and reactive ion etching," Appl. Phys., A Mater. Sci. Process. 79(8), 2027-2031 (2004).
-
(2004)
Appl. Phys., A Mater. Sci. Process
, vol.79
, Issue.8
, pp. 2027-2031
-
-
Lee, C.1
Chang, T.2
Lee, K.3
Lin, J.4
Wang, J.5
|