메뉴 건너뛰기




Volumn 227, Issue , 2007, Pages 305-312

Exponentiated gradient algorithms for log-linear structured prediction

Author keywords

[No Author keywords available]

Indexed keywords

CONJUGATE GRADIENT METHOD; LINEAR SYSTEMS; MATHEMATICAL MODELS; MAXIMUM LIKELIHOOD ESTIMATION;

EID: 34547969126     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1273496.1273535     Document Type: Conference Paper
Times cited : (27)

References (20)
  • 2
    • 31844436350 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for large-margin structured classification
    • Bartlett, P., Collins, M., Taskar, B., & McAllester, D. (2004). Exponentiated gradient algorithms for large-margin structured classification. NIPS.
    • (2004) NIPS
    • Bartlett, P.1    Collins, M.2    Taskar, B.3    McAllester, D.4
  • 3
    • 0037403111 scopus 로고    scopus 로고
    • Mirror descent and nonlinear projected subgradient methods for convex optimization
    • Beck, A., & Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for convex optimization. Operations Research Letters, 31, 167-175.
    • (2003) Operations Research Letters , vol.31 , pp. 167-175
    • Beck, A.1    Teboulle, M.2
  • 4
    • 85086490822 scopus 로고    scopus 로고
    • CoNLL-X shared task on multilingual dependency parsing
    • Buchholz, S., & Marsi, E. (2006). CoNLL-X shared task on multilingual dependency parsing. Proc. of CoNLL-X.
    • (2006) Proc. of CoNLL-X
    • Buchholz, S.1    Marsi, E.2
  • 5
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, adaboost and bregman distances
    • Collins, M., Schapire, R., & Singer, Y. (2002). Logistic regression, adaboost and bregman distances. Machine Learning, 48, 253-285.
    • (2002) Machine Learning , vol.48 , pp. 253-285
    • Collins, M.1    Schapire, R.2    Singer, Y.3
  • 8
    • 30044437592 scopus 로고    scopus 로고
    • A fast dual algorithm for kernel logistic regression
    • Keerthi, S., Duan, K., Shevade, S., &, Poo, A. N. (2005). A fast dual algorithm for kernel logistic regression. Machine Learning, 61, 151-165.
    • (2005) Machine Learning , vol.61 , pp. 151-165
    • Keerthi, S.1    Duan, K.2    Shevade, S.3    Poo, A.N.4
  • 9
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Kivinen, J., & Warmuth, M. (1997). Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132, 1-63.
    • (1997) Information and Computation , vol.132 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.2
  • 10
    • 0142192295 scopus 로고    scopus 로고
    • Conditonal random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditonal random fields: Probabilistic models for segmenting and labeling sequence data. Proc. of ICML.
    • (2001) Proc. of ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 11
    • 1542337831 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • Lebanon, G., & Lafferty, J. (2001). Boosting and maximum likelihood for exponential models. NIPS.
    • (2001) NIPS
    • Lebanon, G.1    Lafferty, J.2
  • 13
    • 34547972634 scopus 로고    scopus 로고
    • Dual optimization of conditional probability models
    • Univ. of Toronto
    • Memisevic, R. (2006). Dual optimization of conditional probability models (Technical Report). Univ. of Toronto.
    • (2006) Technical Report
    • Memisevic, R.1
  • 14
    • 21244446518 scopus 로고    scopus 로고
    • A comparison of numerical optimizers for logistic regression
    • CMU
    • Minka, T. (2003). A comparison of numerical optimizers for logistic regression (Technical Report). CMU.
    • (2003) Technical Report
    • Minka, T.1
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press
    • Piatt, J. (1998). Fast training of support vector machines using sequential minimal optimization. In Advances in kernel methods - support vector learning. MIT Press.
    • (1998) Advances in kernel methods - support vector learning
    • Piatt, J.1
  • 16
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • Sha, F., & Pereira, F. (2003). Shallow parsing with conditional random fields. Proc. of HLT-NAACL.
    • (2003) Proc. of HLT-NAACL
    • Sha, F.1    Pereira, F.2
  • 17
    • 34547974161 scopus 로고    scopus 로고
    • Shalev-Shwartz, S., &: Singer, Y. (2006). Convex repeated games and fenchel duality. NIPS.
    • Shalev-Shwartz, S., &: Singer, Y. (2006). Convex repeated games and fenchel duality. NIPS.
  • 20
    • 0347585601 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu, J., & Hastie, T. (2001). Kernel logistic regression and the import vector machine. NIPS.
    • (2001) NIPS
    • Zhu, J.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.