메뉴 건너뛰기




Volumn , Issue , 2008, Pages 1256-1263

Laplace maximum margin Markov networks

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CONVEX OPTIMIZATION; FORECASTING; INFERENCE ENGINES; LAPLACE TRANSFORMS; MACHINE LEARNING; MARKOV PROCESSES; EDUCATION; IONIZING RADIATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; ROBOT LEARNING;

EID: 56449096750     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390156.1390314     Document Type: Conference Paper
Times cited : (21)

References (21)
  • 2
    • 73549088698 scopus 로고    scopus 로고
    • 1-regularized log-linear models
    • 1-regularized log-linear models. ICML.
    • (2007) ICML
    • Andrew, G.1    Gao, J.2
  • 3
    • 31844436350 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for larg-margin structured classification
    • Bartlett, P., Collins, M., Taskar, B., & McAllester, D. (2004). Exponentiated gradient algorithms for larg-margin structured classification. NIPS.
    • (2004) NIPS
    • Bartlett, P.1    Collins, M.2    Taskar, B.3    McAllester, D.4
  • 4
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • Bennett, K. P., & Mangasarian, O. L. (1992). Robust linear programming discrimination of two linearly inseparable sets. Optim. Methods Softw, 23-34.
    • (1992) Optim. Methods Softw , pp. 23-34
    • Bennett, K.P.1    Mangasarian, O.L.2
  • 6
    • 34250663051 scopus 로고    scopus 로고
    • Maximum entropy density estimation with generalized regularization and an application to species distribution modeling
    • Dudik, M., Phillips, S. J., & Schaphe, R. E. (2007). Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. JMLR, 1217-1260.
    • (2007) JMLR , pp. 1217-1260
    • Dudik, M.1    Phillips, S.J.2    Schaphe, R.E.3
  • 7
    • 0141836275 scopus 로고    scopus 로고
    • Adaptive sparseness for supervised learning
    • Figueiredo, M. (2003). Adaptive sparseness for supervised learning. IEEE Trans, on PAMI, 25, 1150-1159.
    • (2003) IEEE Trans, on PAMI , vol.25 , pp. 1150-1159
    • Figueiredo, M.1
  • 8
    • 56449115359 scopus 로고    scopus 로고
    • Exponentiated gradient algorithms for log-linear structured prediction
    • Globerson, A., Koo, T. Y., Carreras, X., & Collins, M. (2007). Exponentiated gradient algorithms for log-linear structured prediction. ICML.
    • (2007) ICML
    • Globerson, A.1    Koo, T.Y.2    Carreras, X.3    Collins, M.4
  • 10
    • 34248137881 scopus 로고    scopus 로고
    • On bayesian classification with laplace priors
    • Kaban, A. (2007). On bayesian classification with laplace priors. Pattern Recognition Letters, 28, 1271-1282.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 1271-1282
    • Kaban, A.1
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. ICML.
    • (2001) ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 12
    • 3142669511 scopus 로고    scopus 로고
    • An improved predictive accuracy bound for averaging classifiers
    • Langford, J., Seeger, M., & Megiddo, N. (2001). An improved predictive accuracy bound for averaging classifiers. ICML.
    • (2001) ICML
    • Langford, J.1    Seeger, M.2    Megiddo, N.3
  • 13
    • 1542337831 scopus 로고    scopus 로고
    • Boosting and maximum likelihood for exponential models
    • Lebanon, G., & Lafferty, J. (2001). Boosting and maximum likelihood for exponential models. NIPS.
    • (2001) NIPS
    • Lebanon, G.1    Lafferty, J.2
  • 14
    • 85142829716 scopus 로고    scopus 로고
    • Efficient structure learning of markov networks using 11-regularization
    • Lee, S.-I., Ganapathi, V., & Koller, D. (2006). Efficient structure learning of markov networks using 11-regularization. NIPS.
    • (2006) NIPS
    • Lee, S.-I.1    Ganapathi, V.2    Koller, D.3
  • 15
  • 16
    • 72449164388 scopus 로고    scopus 로고
    • online subgradient methods for structured prediction
    • Ratliff, N. D., Bagnell, J. A., & Zinkevich, M. A. (2007). (online) subgradient methods for structured prediction. AISTATS.
    • (2007) AISTATS
    • Ratliff, N.D.1    Bagnell, J.A.2    Zinkevich, M.A.3
  • 18
    • 33745798352 scopus 로고    scopus 로고
    • Structured prediction via the extragradient method
    • Taskar, B., Lacoste-Julien, S., & Jordan, M. I. (2006). Structured prediction via the extragradient method. NIPS.
    • (2006) NIPS
    • Taskar, B.1    Lacoste-Julien, S.2    Jordan, M.I.3
  • 19
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc., B, 267-288.
    • (1996) J. Royal. Statist. Soc., B , pp. 267-288
    • Tibshirani, R.1
  • 20
    • 14344250451 scopus 로고    scopus 로고
    • Support vector machine learning for interdependent and structured output spaces
    • Tsochantaridis, I., Hofmann, T., Joachims, T., & Altun, Y. (2004). Support vector machine learning for interdependent and structured output spaces. ICML.
    • (2004) ICML
    • Tsochantaridis, I.1    Hofmann, T.2    Joachims, T.3    Altun, Y.4
  • 21
    • 85146130171 scopus 로고    scopus 로고
    • High-dimensional graphical model selection using l1-regularized logistic regression
    • Wainwright, M. J., Ravikumar, P., & Lafferty, J. (2006). High-dimensional graphical model selection using l1-regularized logistic regression. NIPS.
    • (2006) NIPS
    • Wainwright, M.J.1    Ravikumar, P.2    Lafferty, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.