-
1
-
-
0029873670
-
Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer
-
Denmeade SR, Lin XS, Isaacs JT. Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 1996;28:251-65.
-
(1996)
Prostate
, vol.28
, pp. 251-265
-
-
Denmeade, S.R.1
Lin, X.S.2
Isaacs, J.T.3
-
2
-
-
0031038011
-
Human androgen receptor expression in prostate cancer following androgen ablation
-
de Vere White R, Meyers F, Chi SG, et al. Human androgen receptor expression in prostate cancer following androgen ablation. Eur Urol 1997;31:1-6.
-
(1997)
Eur Urol
, vol.31
, pp. 1-6
-
-
de Vere White, R.1
Meyers, F.2
Chi, S.G.3
-
3
-
-
0031946389
-
Expression, structure, and function of androgen receptor in advanced prostatic carcinoma
-
Culig Z, Hobisch A, Hittmair A, et al. Expression, structure, and function of androgen receptor in advanced prostatic carcinoma. Prostate 1998; 35:63-70.
-
(1998)
Prostate
, vol.35
, pp. 63-70
-
-
Culig, Z.1
Hobisch, A.2
Hittmair, A.3
-
4
-
-
0029072101
-
Distant metastases from prostatic carcinoma express androgen receptor protein
-
Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 1995;55:3068-72.
-
(1995)
Cancer Res
, vol.55
, pp. 3068-3072
-
-
Hobisch, A.1
Culig, Z.2
Radmayr, C.3
Bartsch, G.4
Klocker, H.5
Hittmair, A.6
-
5
-
-
0036141411
-
Androgen receptor expression and cellular proliferation during transition from androgen dependent to recurrent growth in the CWR22 Prostate Cancer Xenograft
-
Kim D, Gregory CW, French FS, Smith GW, Mohler JL. Androgen receptor expression and cellular proliferation during transition from androgen dependent to recurrent growth in the CWR22 Prostate Cancer Xenograft. Am J Pathol 2002;160:219-26.
-
(2002)
Am J Pathol
, vol.160
, pp. 219-226
-
-
Kim, D.1
Gregory, C.W.2
French, F.S.3
Smith, G.W.4
Mohler, J.L.5
-
6
-
-
2342558431
-
Androgen receptor in prostate cancer
-
Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev 2004;25: 276-308.
-
(2004)
Endocr Rev
, vol.25
, pp. 276-308
-
-
Heinlein, C.A.1
Chang, C.2
-
7
-
-
0032535307
-
Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes
-
Gregory CW, Hamil KG, Kim D, et al. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 1998;58:5718-24.
-
(1998)
Cancer Res
, vol.58
, pp. 5718-5724
-
-
Gregory, C.W.1
Hamil, K.G.2
Kim, D.3
-
8
-
-
0035845850
-
Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling
-
Mousses JL, Wagner U, Chen Y, et al. Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 2001;20:6718-23.
-
(2001)
Oncogene
, vol.20
, pp. 6718-6723
-
-
Mousses, J.L.1
Wagner, U.2
Chen, Y.3
-
9
-
-
0028944138
-
In vivo amplification of the androgen receptor gene in progression of human prostate cancer
-
Visakorpi T, Hytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene in progression of human prostate cancer. Nat Genet 1995;9:401-6.
-
(1995)
Nat Genet
, vol.9
, pp. 401-406
-
-
Visakorpi, T.1
Hytinen, E.2
Koivisto, P.3
-
10
-
-
8244262043
-
Dehydroepiandrosterone activates mutant androgen receptor expressed in the androgen-dependent human prostate cancer xenograph CWR22 and LNCaP cells
-
Tan J-A, Sharief Y, Hamil KG, et al. Dehydroepiandrosterone activates mutant androgen receptor expressed in the androgen-dependent human prostate cancer xenograph CWR22 and LNCaP cells. Mol Endocrinol 1997;11:450-9.
-
(1997)
Mol Endocrinol
, vol.11
, pp. 450-459
-
-
Tan, J.-A.1
Sharief, Y.2
Hamil, K.G.3
-
11
-
-
0035361340
-
A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy
-
Gregory CW, He B, Johnson RT, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001;61:4315-9.
-
(2001)
Cancer Res
, vol.61
, pp. 4315-4319
-
-
Gregory, C.W.1
He, B.2
Johnson, R.T.3
-
13
-
-
27644452640
-
Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer
-
Titus MA, Schell MJ, Lih FB, Tomer KB, Mohler JL. Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clin Cancer Res 2005;11:4653-7.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 4653-4657
-
-
Titus, M.A.1
Schell, M.J.2
Lih, F.B.3
Tomer, K.B.4
Mohler, J.L.5
-
14
-
-
0035930133
-
Androgen receptor signaling in androgen refractory prostate cancer
-
Grossman ME, Huang H, Tindall DJ. Androgen receptor signaling in androgen refractory prostate cancer. J Natl Cancer Inst 2001;93: 1687-97.
-
(2001)
J Natl Cancer Inst
, vol.93
, pp. 1687-1697
-
-
Grossman, M.E.1
Huang, H.2
Tindall, D.J.3
-
15
-
-
0035496220
-
The development of androgen-independent prostate cancer
-
Feldman BJ, Feldman D. The development of androgen-independent prostate cancer. Nat Rev Cancer 2001;1:34-45.
-
(2001)
Nat Rev Cancer
, vol.1
, pp. 34-45
-
-
Feldman, B.J.1
Feldman, D.2
-
16
-
-
0036219874
-
Mechanisms involved in the progression of androgen-independent prostate cancers: It is not only the cancer cell's fault
-
Arnold JT, Isaacs JT. Mechanisms involved in the progression of androgen-independent prostate cancers: it is not only the cancer cell's fault. Endocr Relat Cancer 2002;9:61-73.
-
(2002)
Endocr Relat Cancer
, vol.9
, pp. 61-73
-
-
Arnold, J.T.1
Isaacs, J.T.2
-
17
-
-
33644675811
-
Biology of progressive, castration-resistant prostate cancer: Directed therapies targeting the androgen-receptor signaling axis
-
Scher HI, Sawyers Cl. Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. J Clin Oncol 2005;23:8253-61.
-
(2005)
J Clin Oncol
, vol.23
, pp. 8253-8261
-
-
Scher, H.I.1
Sawyers, C.2
-
18
-
-
0034117078
-
14-3-3 proteins: Structure, function, and regulation
-
Fu H, Subramanian RR, Masters SC. 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000;40:617-47.
-
(2000)
Annu Rev Pharmacol Toxicol
, vol.40
, pp. 617-647
-
-
Fu, H.1
Subramanian, R.R.2
Masters, S.C.3
-
19
-
-
0035313699
-
Phosphoserine/threoninebinding domains
-
Yaffe MB, Elia AEH. Phosphoserine/threoninebinding domains. Curr Opin Cell Biol 2001;13: 131-38.
-
(2001)
Curr Opin Cell Biol
, vol.13
, pp. 131-138
-
-
Yaffe, M.B.1
Elia, A.E.H.2
-
20
-
-
0034528346
-
14-3-3 proteins: Regulation of subcellular localization by molecular interference
-
Muslin AJ, Xing H. 14-3-3 proteins: regulation of subcellular localization by molecular interference. Cell Signal 2000;12:703-9.
-
(2000)
Cell Signal
, vol.12
, pp. 703-709
-
-
Muslin, A.J.1
Xing, H.2
-
21
-
-
0035473486
-
14-3-3 proteins; bringing new definitions to scaffolding
-
Tzivion G, Shen YH, Zhu J. 14-3-3 proteins; bringing new definitions to scaffolding. Oncogene 2001;20:6331-38.
-
(2001)
Oncogene
, vol.20
, pp. 6331-6338
-
-
Tzivion, G.1
Shen, Y.H.2
Zhu, J.3
-
22
-
-
0345059753
-
The 14-3-3 cancer connection
-
Hermeking H. The 14-3-3 cancer connection. Nat Rev Cancer 2003;3:931-43.
-
(2003)
Nat Rev Cancer
, vol.3
, pp. 931-943
-
-
Hermeking, H.1
-
23
-
-
0028053632
-
CWR22: Androgen-dependent xenograft model derived from a primary human prostatic carcinoma
-
Wainstein MA, He F, Robinson D, et al. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res 1994;54:6049-52.
-
(1994)
Cancer Res
, vol.54
, pp. 6049-6052
-
-
Wainstein, M.A.1
He, F.2
Robinson, D.3
-
24
-
-
0032830278
-
Changes in cyclin dependent kinase inhibitors p21 and p27 during the castration induced regression of the CWR22 model of prostatic adenocarcinoma
-
Myers RB, Oelschlager DK, Coan PN, et al. Changes in cyclin dependent kinase inhibitors p21 and p27 during the castration induced regression of the CWR22 model of prostatic adenocarcinoma. J Urol 1999;161:945-9.
-
(1999)
J Urol
, vol.161
, pp. 945-949
-
-
Myers, R.B.1
Oelschlager, D.K.2
Coan, P.N.3
-
25
-
-
0035300409
-
Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen
-
Gregory CW, Johnson RT, Mohler JL, French FS, Wilson EM. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 2001;61:2892-8.
-
(2001)
Cancer Res
, vol.61
, pp. 2892-2898
-
-
Gregory, C.W.1
Johnson, R.T.2
Mohler, J.L.3
French, F.S.4
Wilson, E.M.5
-
26
-
-
0030971096
-
Raf-1 kinase and exoenzyme S interact with 14-3-3ζ through a common site involving lysine 49
-
Zhang L, Wang H, Liu D, Liddington R, Fu H. Raf-1 kinase and exoenzyme S interact with 14-3-3ζ through a common site involving lysine 49. J Biol Chem 1997;272:13717-24.
-
(1997)
J Biol Chem
, vol.272
, pp. 13717-13724
-
-
Zhang, L.1
Wang, H.2
Liu, D.3
Liddington, R.4
Fu, H.5
-
27
-
-
1342325380
-
Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer
-
Gregory CW, Fei X, Ponguta LA, et al. Epidermal growth factor increases coactivation of the androgen receptor in recurrent prostate cancer. J Biol Chem 2004;279:7119-30.
-
(2004)
J Biol Chem
, vol.279
, pp. 7119-7130
-
-
Gregory, C.W.1
Fei, X.2
Ponguta, L.A.3
-
28
-
-
20444476601
-
Steroid 5α-reductase isozymes I and II in recurrent prostate cancer
-
Titus MA, Gregory CW, Ford OH III, Schell MJ, Maygarden SJ, Mohler JL. Steroid 5α-reductase isozymes I and II in recurrent prostate cancer. Clin Cancer Res 2005;11:4365-71.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 4365-4371
-
-
Titus, M.A.1
Gregory, C.W.2
Ford III, O.H.3
Schell, M.J.4
Maygarden, S.J.5
Mohler, J.L.6
-
29
-
-
0027166764
-
Immunohistochemistry of the androgen receptor in human benign and malignant prostate tissue
-
Miyamoto KK, McSherry SA, Dent GA, et al. Immunohistochemistry of the androgen receptor in human benign and malignant prostate tissue. J Urol 1993;149:1015-9.
-
(1993)
J Urol
, vol.149
, pp. 1015-1019
-
-
Miyamoto, K.K.1
McSherry, S.A.2
Dent, G.A.3
-
30
-
-
13444304134
-
Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction
-
Bai S, He B, Wilson EM. Melanoma antigen gene protein MAGE-11 regulates androgen receptor function by modulating the interdomain interaction. Mol Cell Biol 2005;25:1238-57.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 1238-1257
-
-
Bai, S.1
He, B.2
Wilson, E.M.3
-
31
-
-
0035064047
-
Regulation of glucocorticoid receptor activity by 14-3-3 dependent intracellular relocalization of the corepressor RIP140
-
Zilliacus J, Holter E, Wakui H, Tazawa H, Treuter E, Gustafsson JA. Regulation of glucocorticoid receptor activity by 14-3-3 dependent intracellular relocalization of the corepressor RIP140. Mol Endocrinol 2001;15:501-11.
-
(2001)
Mol Endocrinol
, vol.15
, pp. 501-511
-
-
Zilliacus, J.1
Holter, E.2
Wakui, H.3
Tazawa, H.4
Treuter, E.5
Gustafsson, J.A.6
-
32
-
-
33646926129
-
14-3-3 proteins: A historic overview
-
Aitken A. 14-3-3 proteins: a historic overview. Semin Cancer Biol 2006;16:162-72.
-
(2006)
Semin Cancer Biol
, vol.16
, pp. 162-172
-
-
Aitken, A.1
-
33
-
-
0034141550
-
14-3-3 proteins block apoptosis and differentially regulate MAPK cascades
-
Xing H, Zhang S, Weinheimer C, Kovacs A, Muslin AJ. 14-3-3 proteins block apoptosis and differentially regulate MAPK cascades. EMBO J 2000;19:349-58.
-
(2000)
EMBO J
, vol.19
, pp. 349-358
-
-
Xing, H.1
Zhang, S.2
Weinheimer, C.3
Kovacs, A.4
Muslin, A.J.5
-
34
-
-
0033545848
-
HER2/Neu signal cascade to androgen receptor and its coactivators: A novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells
-
Yeh S, Lin HK, Kang HY, Thin TH, Lin MF, Chang C. HER2/Neu signal cascade to androgen receptor and its coactivators: a novel pathway by induction of androgen target genes through MAP kinase in prostate cancer cells. Proc Natl Acad Sci U S A 1999;96:5458-63.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 5458-5463
-
-
Yeh, S.1
Lin, H.K.2
Kang, H.Y.3
Thin, T.H.4
Lin, M.F.5
Chang, C.6
-
35
-
-
16344363218
-
Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth
-
Gregory CW, Whang YE, McCall W, et al. Heregulin-induced activation of HER2 and HER3 increases androgen receptor transactivation and CWR-R1 human recurrent prostate cancer cell growth. Clin Cancer Res 2005;11:1704-12.
-
(2005)
Clin Cancer Res
, vol.11
, pp. 1704-1712
-
-
Gregory, C.W.1
Whang, Y.E.2
McCall, W.3
-
36
-
-
17144400795
-
Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer
-
Liu Y, Majumder S, McCall W, et al. Inhibition of HER-2/neu kinase impairs androgen receptor recruitment to the androgen responsive enhancer. Cancer Res 2005;65:3404-9.
-
(2005)
Cancer Res
, vol.65
, pp. 3404-3409
-
-
Liu, Y.1
Majumder, S.2
McCall, W.3
-
37
-
-
0037447330
-
Constitutive activation of the Ras/ mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells
-
Bakin RE, Gioeli D, Sikes RA, Bissonette EA, Weber MJ. Constitutive activation of the Ras/ mitogen-activated protein kinase signaling pathway promotes androgen hypersensitivity in LNCaP prostate cancer cells. Cancer Res 2003;63:1981-9.
-
(2003)
Cancer Res
, vol.63
, pp. 1981-1989
-
-
Bakin, R.E.1
Gioeli, D.2
Sikes, R.A.3
Bissonette, E.A.4
Weber, M.J.5
-
38
-
-
34447316146
-
14-3-3σ increases the transcriptional activity of the androgen receptor in the absence of androgens
-
Quayle SN, Sadar MD. 14-3-3σ increases the transcriptional activity of the androgen receptor in the absence of androgens. Cancer Lett 2007; 254:137-45.
-
(2007)
Cancer Lett
, vol.254
, pp. 137-145
-
-
Quayle, S.N.1
Sadar, M.D.2
-
39
-
-
0034455590
-
Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator
-
Tan J-A, Hall SH, Petrusz P, French FS. Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator. Endocrinology 2000;141:3440-50.
-
(2000)
Endocrinology
, vol.141
, pp. 3440-3450
-
-
Tan, J.-A.1
Hall, S.H.2
Petrusz, P.3
French, F.S.4
-
40
-
-
0032230231
-
Nuclear receptor binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator (SRC-1): Multiple motifs with different binding specificities
-
Ding XF, Anderson CM, Ma H, et al. Nuclear receptor binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator (SRC-1): multiple motifs with different binding specificities. Mol Endocrinol 1998;12:302-13.
-
(1998)
Mol Endocrinol
, vol.12
, pp. 302-313
-
-
Ding, X.F.1
Anderson, C.M.2
Ma, H.3
-
41
-
-
0033305547
-
Nuclear receptor coregulators: Cellular and molecular biology
-
McKenna NJ, Lanz RB, O'Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999;20:321-44.
-
(1999)
Endocr Rev
, vol.20
, pp. 321-344
-
-
McKenna, N.J.1
Lanz, R.B.2
O'Malley, B.W.3
-
42
-
-
0037371767
-
Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs
-
Bin H, Wilson EM. Electrostatic modulation in steroid receptor recruitment of LXXLL and FXXLF motifs. Mol Cell Biol 2003;23:2135-50.
-
(2003)
Mol Cell Biol
, vol.23
, pp. 2135-2150
-
-
Bin, H.1
Wilson, E.M.2
-
43
-
-
33745649842
-
Receptor-interacting protein 140 is a repressor of the androgen receptor activity
-
Carascossa S, Gobinet J, Georget V, et al. Receptor-interacting protein 140 is a repressor of the androgen receptor activity. Mol Endocrinol 2006;20:1506-18.
-
(2006)
Mol Endocrinol
, vol.20
, pp. 1506-1518
-
-
Carascossa, S.1
Gobinet, J.2
Georget, V.3
-
44
-
-
0036479325
-
14-3-3 proteins: Active cofactors in cellular regulation by serine/threonine phosphorylation
-
Tzivion G, Avruch J. 14-3-3 proteins: active cofactors in cellular regulation by serine/threonine phosphorylation. J Biol Chem 2002;277:3061-4.
-
(2002)
J Biol Chem
, vol.277
, pp. 3061-3064
-
-
Tzivion, G.1
Avruch, J.2
-
45
-
-
33646898172
-
Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: A comparison of the X-ray crystal structures of all human 14-3-3 isoforms
-
Gardino AK, Smerdon SJ, Yaffe MB. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin Cancer Biol 2006;16:173-82.
-
(2006)
Semin Cancer Biol
, vol.16
, pp. 173-182
-
-
Gardino, A.K.1
Smerdon, S.J.2
Yaffe, M.B.3
-
46
-
-
0029041681
-
Identification of three proline-directed phosphorylation sites in the human androgen receptor
-
Zhou ZX, Kemppainen JA, Wilson EM. Identification of three proline-directed phosphorylation sites in the human androgen receptor. Mol Endocrinol 1995;9:605-15.
-
(1995)
Mol Endocrinol
, vol.9
, pp. 605-615
-
-
Zhou, Z.X.1
Kemppainen, J.A.2
Wilson, E.M.3
-
47
-
-
33344467745
-
Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization
-
Gioeli D, Black BE, Gordon V, et al. Stress kinase signaling regulates androgen receptor phosphorylation, transcription, and localization. Mol Endocrinol 2006;20:503-15.
-
(2006)
Mol Endocrinol
, vol.20
, pp. 503-515
-
-
Gioeli, D.1
Black, B.E.2
Gordon, V.3
-
48
-
-
7444250101
-
Phosphorylation of androgen receptor isoforms
-
Wong HY, Burghoorn JA, Van Leeuwen M, et al. Phosphorylation of androgen receptor isoforms. Biochem J 2004;383:267-76.
-
(2004)
Biochem J
, vol.383
, pp. 267-276
-
-
Wong, H.Y.1
Burghoorn, J.A.2
Van Leeuwen, M.3
-
49
-
-
28844467498
-
Cellspecific regulation of androgen receptor phosphorylation in vivo
-
Taneja SS, Ha S, Swenson NK, et al. Cellspecific regulation of androgen receptor phosphorylation in vivo. J Biol Chem 2005;280: 40916-24.
-
(2005)
J Biol Chem
, vol.280
, pp. 40916-40924
-
-
Taneja, S.S.1
Ha, S.2
Swenson, N.K.3
-
50
-
-
0035932022
-
Androgen receptor signalling: Comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3ç
-
Haendler B, Schuttke I, Schleuning WD. Androgen receptor signalling: comparative analysis of androgen response elements and implication of heat-shock protein 90 and 14-3-3ç. Mol Cell Endocrinol 2001;173:63-73.
-
(2001)
Mol Cell Endocrinol
, vol.173
, pp. 63-73
-
-
Haendler, B.1
Schuttke, I.2
Schleuning, W.D.3
-
51
-
-
0033010379
-
Androgenic regulation of growth factor and growth factor receptor expression in the CWR22 model of prostatic adenocarcinoma
-
Myers RB, Oelschlager DK, Manne U, Coan PN, Weiss H, Grizzle WE. Androgenic regulation of growth factor and growth factor receptor expression in the CWR22 model of prostatic adenocarcinoma. Int J Cancer 1999;82:424-9.
-
(1999)
Int J Cancer
, vol.82
, pp. 424-429
-
-
Myers, R.B.1
Oelschlager, D.K.2
Manne, U.3
Coan, P.N.4
Weiss, H.5
Grizzle, W.E.6
-
52
-
-
1842476014
-
Quantitative profiling of LNCaP prostate cancer cells using isotopecoded affinity tags and mass spectrometry
-
Meehan KL, Sadar MD. Quantitative profiling of LNCaP prostate cancer cells using isotopecoded affinity tags and mass spectrometry. Proteomics 2004;4:1116-34.
-
(2004)
Proteomics
, vol.4
, pp. 1116-1134
-
-
Meehan, K.L.1
Sadar, M.D.2
-
53
-
-
4644220424
-
Proteomic identification of 14-3-3σ as a common component of the androgen receptor and the epidermal growth factor receptor signaling pathways of the human prostate epithelial cell line M12
-
Huang D, Liu X, Plymate SR, et al. Proteomic identification of 14-3-3σ as a common component of the androgen receptor and the epidermal growth factor receptor signaling pathways of the human prostate epithelial cell line M12. Oncogene 2004;23:6881-9.
-
(2004)
Oncogene
, vol.23
, pp. 6881-6889
-
-
Huang, D.1
Liu, X.2
Plymate, S.R.3
-
54
-
-
33750516297
-
A novel function of 14-3-3 protein: 14-3-3ζ is a heat shock-related molecular chaperone that dissolves thermal-aggregated proteins
-
Epub ahead of print
-
Yano M, Nakamuta S, Wu X, Okumura Y, Kido H. A novel function of 14-3-3 protein: 14-3-3ζ is a heat shock-related molecular chaperone that dissolves thermal-aggregated proteins. Mol Biol Cell 2006;17:4769-79, [Epub ahead of print].
-
(2006)
Mol Biol Cell
, vol.17
, pp. 4769-4779
-
-
Yano, M.1
Nakamuta, S.2
Wu, X.3
Okumura, Y.4
Kido, H.5
-
55
-
-
33646903670
-
Dynamic 14-3-3/ client protein interactions integrate survival and apoptotic pathways
-
Porter GW, Khuri FR, Fu H. Dynamic 14-3-3/ client protein interactions integrate survival and apoptotic pathways. Semin Cancer Biol 2006;16:193-202.
-
(2006)
Semin Cancer Biol
, vol.16
, pp. 193-202
-
-
Porter, G.W.1
Khuri, F.R.2
Fu, H.3
-
56
-
-
33744544172
-
14-3-3 proteins in cell cycle regulation
-
Hermeking H, Benzinger A. 14-3-3 proteins in cell cycle regulation. Semin Cancer Biol 2006;16: 183-92.
-
(2006)
Semin Cancer Biol
, vol.16
, pp. 183-192
-
-
Hermeking, H.1
Benzinger, A.2
-
57
-
-
0033899869
-
A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma
-
Hoang AT, Huang J, Rudra-Ganguly N, et al. A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 2000;156:857-64.
-
(2000)
Am J Pathol
, vol.156
, pp. 857-864
-
-
Hoang, A.T.1
Huang, J.2
Rudra-Ganguly, N.3
-
58
-
-
3142672066
-
An androgen receptor NH2-terminal motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP)
-
Bin H, Bai S, Hnat AT, et al. An androgen receptor NH2-terminal motif interacts with the COOH terminus of the Hsp70-interacting protein (CHIP). J Biol Chem 2004;279:30643-53.
-
(2004)
J Biol Chem
, vol.279
, pp. 30643-30653
-
-
Bin, H.1
Bai, S.2
Hnat, A.T.3
-
59
-
-
10744223839
-
CHIP activates HSF1 and confers protection against apoptosis and cellular stress
-
Dai Q, Zhang C, Wu Y, et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 2003;22:5446-58.
-
(2003)
EMBO J
, vol.22
, pp. 5446-5458
-
-
Dai, Q.1
Zhang, C.2
Wu, Y.3
|