메뉴 건너뛰기




Volumn , Issue , 2008, Pages 101-142

Reverse Engineering Gene Regulatory Networks with Various Machine Learning Methods

Author keywords

Analysis; Bayesian inference; Bayesian networks; Cytometry data; DNA microarrays; Gene regulatory networks; Graphical Gaussian models; Machine learning methods; Markov chain Monte Carlo; Raf signaling pathway; Relevance networks; Systems biology

Indexed keywords


EID: 72949083416     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9783527622818.ch5     Document Type: Chapter
Times cited : (12)

References (41)
  • 2
    • 33646351332 scopus 로고    scopus 로고
    • Relevance networks: a first step toward finding genetic regulatory networks within microarray data inThe Analysis of Gene Expression Data
    • (eds G. Parmigiani, E.S. Garett, R.A. Irizarry and S.L. Zeger), Springer, New York
    • Butte, A.S. and Kohane, I.S. (2003) Relevance networks: a first step toward finding genetic regulatory networks within microarray data inThe Analysis of Gene Expression Data, (eds G. Parmigiani, E.S. Garett, R.A. Irizarry and S.L. Zeger), Springer, New York, pp. 428-446.
    • (2003) , pp. 428-446
    • Butte, A.S.1    Kohane, I.S.2
  • 3
    • 4243681745 scopus 로고    scopus 로고
    • Principled computational methods for the validation and discovery of genetic regulatory networks
    • PhD thesis, MIT
    • Hartemink, A.J. (2001) Principled computational methods for the validation and discovery of genetic regulatory networks. PhD thesis, MIT,http://citeseer.ist.psu.edu/hartemink01principled.html.
    • (2001)
    • Hartemink, A.J.1
  • 4
    • 84960432692 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • Proceedings IEEE Computer Society Bioinformatics Conference (CSB'03) August 11-14, 2003, Stanford, CA
    • Imoto, S., Higuchi, T., Goto, T., Kuhara, S. and Miyano, S. (2003) Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks. Proceedings IEEE Computer Society Bioinformatics Conference (CSB'03) August 11-14, 2003, Stanford, CA, pp. 104-113.
    • (2003) , pp. 104-113
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Kuhara, S.4    Miyano, S.5
  • 5
    • 27544494569 scopus 로고    scopus 로고
    • Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data
    • Nariai, N., Tamada, Y., Imoto, S. and Miyano, S. (2005) Estimating gene regulatory networks and protein-protein interactions of Saccharomyces cerevisiae from multiple genome-wide data. Bioinformatics, 21 (Suppl. 2), ii206-ii212.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 2
    • Nariai, N.1    Tamada, Y.2    Imoto, S.3    Miyano, S.4
  • 6
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer, J. and Strimmer, K. (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics, 21 (6), 754-764.
    • (2005) Bioinformatics , vol.21 , Issue.6 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 7
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schäfer, J. and Strimmer, K. (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4 (1), 32.
    • (2005) Statistical Applications in Genetics and Molecular Biology , vol.4 , Issue.1 , pp. 32
    • Schäfer, J.1    Strimmer, K.2
  • 8
    • 22144454660 scopus 로고    scopus 로고
    • Genetical genomics analysis of a yeast segregant population for transcription network inference
    • author>Bing, N. and Hoeschele, I. (2005) Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics, 170, 533-542.
    • (2005) Genetics , vol.170 , pp. 533-542
    • Bing, N.1    Hoeschele, I.2
  • 9
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulations of complex biological systems
    • ISMB02 special issue
    • Smith, V.A., Jarvis, E.D. and Hartemink, A.J. (2002) Evaluating functional network inference using simulations of complex biological systems. Bioinformatics, 18, S216-S224. (ISMB02 special issue).
    • (2002) Bioinformatics , vol.18
    • Smith, V.A.1    Jarvis, E.D.2    Hartemink, A.J.3
  • 10
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, 19, 2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 11
    • 0242651270 scopus 로고    scopus 로고
    • Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data
    • Proceedings of the Second International Conference on Systems Biology Pasadena, CA
    • Zak, D.E., Doyle, F.J., Gonye, G.E. and Schwaber, J.S. (2001) Simulation studies for the identification of genetic networks from cDNA array and regulatory activity data.Proceedings of the Second International Conference on Systems Biology Pasadena, CA, pp.231-238.
    • (2001) , pp. 231-238
    • Zak, D.E.1    Doyle, F.J.2    Gonye, G.E.3    Schwaber, J.S.4
  • 12
    • 33749862801 scopus 로고    scopus 로고
    • Reconstructing gene networks by passive and active Bayesian learning
    • PhD thesis, Birbeck College, University of London
    • Pournara, I.V. (2005) Reconstructing gene networks by passive and active Bayesian learning. PhD thesis, Birbeck College, University of London.
    • (2005)
    • Pournara, I.V.1
  • 13
    • 17644427718 scopus 로고    scopus 로고
    • Protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D.A. and Nolan, G.P. (2005) Protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 14
    • 0032549745 scopus 로고    scopus 로고
    • Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene
    • Yuh, C.H., Bolouri, H. and Davidson, E.H. (1998) Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science, 279, 1896-1902.
    • (1998) Science , vol.279 , pp. 1896-1902
    • Yuh, C.H.1    Bolouri, H.2    Davidson, E.H.3
  • 15
    • 0035094449 scopus 로고    scopus 로고
    • Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control
    • Yuh, C.H., Bolouri, H. and Davidson, E.H. (2001) Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. Development, 128, 617-629.
    • (2001) Development , vol.128 , pp. 617-629
    • Yuh, C.H.1    Bolouri, H.2    Davidson, E.H.3
  • 16
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements
    • Butte, A.S. and Kohane, I.S. (2000) Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements. Pacific Symposium on Biocomputing, 2000, 418-429.
    • (2000) Pacific Symposium on Biocomputing , vol.2000 , pp. 418-429
    • Butte, A.S.1    Kohane, I.S.2
  • 17
    • 0003759849 scopus 로고    scopus 로고
    • Introduction to Graphical Modelling
    • Springer Verlag, New York
    • Edwards, D.M. (2000) Introduction to Graphical Modelling, Springer Verlag, New York.
    • (2000)
    • Edwards, D.M.1
  • 18
    • 0346961488 scopus 로고    scopus 로고
    • A well conditioned estimator for largedimensional covariance matrices
    • Ledoit, O. and Wolf, M. (2004) A well conditioned estimator for largedimensional covariance matrices. Journal of Multivariate Analysis, 88, 365-411.
    • (2004) Journal of Multivariate Analysis , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 19
    • 0004202337 scopus 로고    scopus 로고
    • An Introduction to Bayesian Networks
    • UCL Press, London, England
    • Jensen, F. (1996) An Introduction to Bayesian Networks, UCL Press, London, England.
    • (1996)
    • Jensen, F.1
  • 22
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Chickering, D. (2002) Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2, 445-498.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.1
  • 23
    • 0004194893 scopus 로고    scopus 로고
    • Computation Causation, and Discovery
    • MIT Press, Cambridge, MA
    • Cooper, G. and Glymour, C. (1999) Computation Causation, and Discovery, MIT Press, Cambridge, MA.
    • (1999)
    • Cooper, G.1    Glymour, C.2
  • 24
    • 78649919483 scopus 로고    scopus 로고
    • Causality: Models, Reasoning and Intelligent Systems
    • Cambridge University Press, London, UK
    • Pearl, J. (2000) Causality: Models, Reasoning and Intelligent Systems, Cambridge University Press, London, UK.
    • (2000)
    • Pearl, J.1
  • 25
    • 0000034390 scopus 로고
    • Learning Gaussian Networks
    • Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, July 29-31, 1994, Seattle, WA. Morgan Kaufmann, San Francisco, CA
    • Geiger, D. and Heckerman, D. (1994) Learning Gaussian Networks. Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, July 29-31, 1994, Seattle, WA. Morgan Kaufmann, San Francisco, CA, pp. 235-243.
    • (1994) , pp. 235-243
    • Geiger, D.1    Heckerman, D.2
  • 26
    • 0002370418 scopus 로고    scopus 로고
    • A tutorial on learning with Bayesian networks
    • in Learning in Graphical Models, Adaptive Computation and Machine Learning, (ed.M.I. Jordan), MIT Press, Cambridge, MA
    • Heckerman, D. (1999) A tutorial on learning with Bayesian networks, in Learning in Graphical Models, Adaptive Computation and Machine Learning, (ed.M.I. Jordan), MIT Press, Cambridge, MA, pp. 301-354.
    • (1999) , pp. 301-354
    • Heckerman, D.1
  • 27
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D. and York, J. (1995) Bayesian graphical models for discrete data. International Statistical Review, 63, 215-232.
    • (1995) International Statistical Review , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 28
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • Friedman, N. and Koller, D. (2003) Being Bayesian about network structure. Machine Learning, 50, 95-126.
    • (2003) Machine Learning , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 29
    • 0003860037 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in Practice
    • Chapman & Hall, Suffolk
    • Gilks, W., Richardson, S. and Spiegelhalter, D. (1996) Markov Chain Monte Carlo in Practice, Chapman & Hall, Suffolk.
    • (1996)
    • Gilks, W.1    Richardson, S.2    Spiegelhalter, D.3
  • 31
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • Giudici, P. and Castelo, R. (2003) Improving Markov chain Monte Carlo model search for data mining. Machine Learning, 50, 127-158.
    • (2003) Machine Learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 32
    • 0036358442 scopus 로고    scopus 로고
    • Discovery of causal relationships in a gene regulation pathway from a mixture of experimental and observational DNA microarray data
    • Yoo, C., Thorson, V. and Cooper, G. (2002) Discovery of causal relationships in a gene regulation pathway from a mixture of experimental and observational DNA microarray data. Pacific Symposium on Biocomputing, 7, 498-509.
    • (2002) Pacific Symposium on Biocomputing , vol.7 , pp. 498-509
    • Yoo, C.1    Thorson, V.2    Cooper, G.3
  • 33
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • Pournara, I. and Wernisch, L. (2004) Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics, 20, 2934-2942.
    • (2004) Bioinformatics , vol.20 , pp. 2934-2942
    • Pournara, I.1    Wernisch, L.2
  • 34
    • 84880880273 scopus 로고    scopus 로고
    • Active Learning for Structure in Bayesian Networks
    • Seventeenth International Joint Conference on Artificial Intelligence, August 4-10, 2001, Seattle, WA
    • Tian, J. and Pearl, J. (2001) Active Learning for Structure in Bayesian Networks, vol. 17, Seventeenth International Joint Conference on Artificial Intelligence, August 4-10, 2001, Seattle, WA, pp. 863-869.
    • (2001) , vol.17 , pp. 863-869
    • Tian, J.1    Pearl, J.2
  • 37
    • 33750370513 scopus 로고    scopus 로고
    • Comparative evaluation of different graphical models for the analysis of gene expression data
    • PhD thesis, University of Dortmund
    • Grzegorczyk, M. (2006) Comparative evaluation of different graphical models for the analysis of gene expression data. PhD thesis, University of Dortmund, https://eldorado.uni-dortmund.de/handle/2003/22855.
    • (2006)
    • Grzegorczyk, M.1
  • 38
    • 46049084505 scopus 로고    scopus 로고
    • Reconstruction of gene regulatory networks from postgenomic data
    • PhD thesis, Biomathematics & Statistics Scotland (BioSS) and University of Edinburgh
    • Werhli, A.V. (2007) Reconstruction of gene regulatory networks from postgenomic data. PhD thesis, Biomathematics & Statistics Scotland (BioSS) and University of Edinburgh.
    • (2007)
    • Werhli, A.V.1
  • 39
    • 0003516749 scopus 로고
    • Physical Chemistry
    • 3rd edn,Oxford University Press, Oxford
    • Atkins, P.W. (1986) Physical Chemistry, 3rd edn,Oxford University Press, Oxford.
    • (1986)
    • Atkins, P.W.1
  • 41
    • 33749825955 scopus 로고    scopus 로고
    • Comparative evaluation of reverse engineering gene regulatory networks with relevance networks graphical Gaussian models and Bayesian networks
    • Werhli, A.V., Grzegorczyk, M. and Husmeier, D. (2006) Comparative evaluation of reverse engineering gene regulatory networks with relevance networks graphical Gaussian models and Bayesian networks. Bioinformatics, 22, 2523-2531.
    • (2006) Bioinformatics , vol.22 , pp. 2523-2531
    • Werhli, A.V.1    Grzegorczyk, M.2    Husmeier, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.