-
1
-
-
33751369521
-
The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae
-
Lettier G., Feng Q., de Mayolo A.A., Erdeniz N., Reid R.J., Lisby M., Mortensen U.H., and Rothstein R. The role of DNA double-strand breaks in spontaneous homologous recombination in S. cerevisiae. PLoS Genet. 2 (2006) e194
-
(2006)
PLoS Genet.
, vol.2
-
-
Lettier, G.1
Feng, Q.2
de Mayolo, A.A.3
Erdeniz, N.4
Reid, R.J.5
Lisby, M.6
Mortensen, U.H.7
Rothstein, R.8
-
2
-
-
72949100868
-
Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
-
Fabre F., Chan A., Heyer W.D., and Gangloff S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. U.S.A. 10 (2002) 10
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.10
, pp. 10
-
-
Fabre, F.1
Chan, A.2
Heyer, W.D.3
Gangloff, S.4
-
3
-
-
0009656614
-
Allelism tests of mutants affecting sensitivity to radiation in yeast and a proposed nomenclature
-
Game J.C., and Cox B.S. Allelism tests of mutants affecting sensitivity to radiation in yeast and a proposed nomenclature. Mutat. Res. 6 (1971) 37-55
-
(1971)
Mutat. Res.
, vol.6
, pp. 37-55
-
-
Game, J.C.1
Cox, B.S.2
-
4
-
-
0038799991
-
Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae
-
Paques F., and Haber J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63 (1999) 349-404
-
(1999)
Microbiol. Mol. Biol. Rev.
, vol.63
, pp. 349-404
-
-
Paques, F.1
Haber, J.E.2
-
5
-
-
0036900120
-
Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair
-
Symington L.S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66 (2002) 630-670
-
(2002)
Microbiol. Mol. Biol. Rev.
, vol.66
, pp. 630-670
-
-
Symington, L.S.1
-
6
-
-
4544281398
-
Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M., Barlow J.H., Burgess R.C., and Rothstein R. Choreography of the DNA damage response; spatiotemporal relationships among checkpoint and repair proteins. Cell 118 (2004) 699-713
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
7
-
-
0028914077
-
Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae
-
Johzuka K., and Ogawa H. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139 (1995) 1521-1532
-
(1995)
Genetics
, vol.139
, pp. 1521-1532
-
-
Johzuka, K.1
Ogawa, H.2
-
8
-
-
0031983191
-
A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis
-
Tsubouchi H., and Ogawa H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18 (1998) 260-268
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 260-268
-
-
Tsubouchi, H.1
Ogawa, H.2
-
9
-
-
0026530911
-
Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation
-
Sugawara N., and Haber J.E. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12 (1992) 563-575
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 563-575
-
-
Sugawara, N.1
Haber, J.E.2
-
10
-
-
0028212415
-
Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae
-
Ivanov E.L., Sugawara N., White C.I., Fabre F., and Haber J.E. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14 (1994) 3414-3425
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 3414-3425
-
-
Ivanov, E.L.1
Sugawara, N.2
White, C.I.3
Fabre, F.4
Haber, J.E.5
-
11
-
-
10944232673
-
Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair
-
Strom L., Lindroos H.B., Shirahige K., and Sjogren C. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol. Cell 16 (2004) 1003-1015
-
(2004)
Mol. Cell
, vol.16
, pp. 1003-1015
-
-
Strom, L.1
Lindroos, H.B.2
Shirahige, K.3
Sjogren, C.4
-
12
-
-
34447536708
-
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
-
Unal E., Heidinger-Pauli J.M., and Koshland D. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317 (2007) 245-248
-
(2007)
Science
, vol.317
, pp. 245-248
-
-
Unal, E.1
Heidinger-Pauli, J.M.2
Koshland, D.3
-
13
-
-
10944262393
-
DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
-
Unal E., Arbel-Eden A., Sattler U., Shroff R., Lichten M., Haber J.E., and Koshland D. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol. Cell 16 (2004) 991-1002
-
(2004)
Mol. Cell
, vol.16
, pp. 991-1002
-
-
Unal, E.1
Arbel-Eden, A.2
Sattler, U.3
Shroff, R.4
Lichten, M.5
Haber, J.E.6
Koshland, D.7
-
14
-
-
0036500555
-
Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage
-
Kim S.T., Xu B., and Kastan M.B. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev. 16 (2002) 560-570
-
(2002)
Genes Dev.
, vol.16
, pp. 560-570
-
-
Kim, S.T.1
Xu, B.2
Kastan, M.B.3
-
15
-
-
0028246091
-
Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae
-
Schiestl R.H., Zhu J., and Petes T.D. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 14 (1994) 4493-4500
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 4493-4500
-
-
Schiestl, R.H.1
Zhu, J.2
Petes, T.D.3
-
16
-
-
0027476083
-
Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae
-
Ajimura M., Leem S.H., and Ogawa H. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133 (1993) 51-66
-
(1993)
Genetics
, vol.133
, pp. 51-66
-
-
Ajimura, M.1
Leem, S.H.2
Ogawa, H.3
-
17
-
-
0026759693
-
XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination
-
Ivanov E.L., Korolev V.G., and Fabre F. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics 132 (1992) 651-664
-
(1992)
Genetics
, vol.132
, pp. 651-664
-
-
Ivanov, E.L.1
Korolev, V.G.2
Fabre, F.3
-
18
-
-
0024986341
-
The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast
-
Malone R.E., Ward T., Lin S., and Waring J. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr. Genet. 18 (1990) 111-116
-
(1990)
Curr. Genet.
, vol.18
, pp. 111-116
-
-
Malone, R.E.1
Ward, T.2
Lin, S.3
Waring, J.4
-
19
-
-
0024292665
-
Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae
-
Ray A., Siddiqi I., Kolodkin A.L., and Stahl F.W. Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae. J. Mol. Biol. 201 (1988) 247-260
-
(1988)
J. Mol. Biol.
, vol.201
, pp. 247-260
-
-
Ray, A.1
Siddiqi, I.2
Kolodkin, A.L.3
Stahl, F.W.4
-
20
-
-
0024403230
-
Double-strand breaks stimulate alternative mechanisms of recombination repair
-
Nickoloff J.A., Singer J.D., Hoekstra M.F., and Heffron F. Double-strand breaks stimulate alternative mechanisms of recombination repair. J. Mol. Biol. 207 (1989) 527-541
-
(1989)
J. Mol. Biol.
, vol.207
, pp. 527-541
-
-
Nickoloff, J.A.1
Singer, J.D.2
Hoekstra, M.F.3
Heffron, F.4
-
21
-
-
0028221221
-
Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity
-
Sweetser D.B., Hough H., Whelden J.F., Arbuckle M., and Nickoloff J.A. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell. Biol. 14 (1994) 3863-3875
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 3863-3875
-
-
Sweetser, D.B.1
Hough, H.2
Whelden, J.F.3
Arbuckle, M.4
Nickoloff, J.A.5
-
22
-
-
0023220011
-
Meiotic recombination in yeast: alteration by multiple heterozygosities
-
Borts R.H., and Haber J.E. Meiotic recombination in yeast: alteration by multiple heterozygosities. Science 237 (1987) 1459-1465
-
(1987)
Science
, vol.237
, pp. 1459-1465
-
-
Borts, R.H.1
Haber, J.E.2
-
23
-
-
0024462116
-
Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae
-
Borts R.H., and Haber J.E. Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123 (1989) 69-80
-
(1989)
Genetics
, vol.123
, pp. 69-80
-
-
Borts, R.H.1
Haber, J.E.2
-
24
-
-
0023484861
-
Intrachromosomal recombination in Saccharomyces cerevisiae: reciprocal exchange in an inverted repeat and associated gene conversion
-
Willis K.K., and Klein H.L. Intrachromosomal recombination in Saccharomyces cerevisiae: reciprocal exchange in an inverted repeat and associated gene conversion. Genetics 117 (1987) 633-643
-
(1987)
Genetics
, vol.117
, pp. 633-643
-
-
Willis, K.K.1
Klein, H.L.2
-
25
-
-
0024372735
-
Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products
-
Aguilera A., and Klein H.L. Yeast intrachromosomal recombination: long gene conversion tracts are preferentially associated with reciprocal exchange and require the RAD1 and RAD3 gene products. Genetics 123 (1989) 683-694
-
(1989)
Genetics
, vol.123
, pp. 683-694
-
-
Aguilera, A.1
Klein, H.L.2
-
26
-
-
0023833017
-
Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae
-
Judd S.R., and Petes T.D. Physical lengths of meiotic and mitotic gene conversion tracts in Saccharomyces cerevisiae. Genetics 118 (1988) 401-410
-
(1988)
Genetics
, vol.118
, pp. 401-410
-
-
Judd, S.R.1
Petes, T.D.2
-
27
-
-
0000459439
-
Recombination in yeast
-
Broach J.R., Pringle J.R., and Jones E.W. (Eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor
-
Petes T.D., Malone R.E., and Symington L.S. Recombination in yeast. In: Broach J.R., Pringle J.R., and Jones E.W. (Eds). The Molecular & Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis and Energetics (1991), Cold Spring Harbor Laboratory Press, Cold Spring Harbor 407-521
-
(1991)
The Molecular & Cellular Biology of the Yeast Saccharomyces: Genome Dynamics, Protein Synthesis and Energetics
, pp. 407-521
-
-
Petes, T.D.1
Malone, R.E.2
Symington, L.S.3
-
28
-
-
0028331722
-
Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae
-
Alani E., Reenan R.A., and Kolodner R.D. Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137 (1994) 19-39
-
(1994)
Genetics
, vol.137
, pp. 19-39
-
-
Alani, E.1
Reenan, R.A.2
Kolodner, R.D.3
-
29
-
-
0025020278
-
Intermediates of recombination during mating type switching in Saccharomyces cerevisiae
-
White C.I., and Haber J.E. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9 (1990) 663-673
-
(1990)
EMBO J.
, vol.9
, pp. 663-673
-
-
White, C.I.1
Haber, J.E.2
-
30
-
-
0027480443
-
Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast
-
Haber J.E., Ray B.L., Kolb J.M., and White C.I. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc. Natl. Acad. Sci. U.S.A. 90 (1993) 3363-3367
-
(1993)
Proc. Natl. Acad. Sci. U.S.A.
, vol.90
, pp. 3363-3367
-
-
Haber, J.E.1
Ray, B.L.2
Kolb, J.M.3
White, C.I.4
-
31
-
-
0025941532
-
Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae
-
Ray B.L., White C.I., and Haber J.E. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 11 (1991) 5372-5380
-
(1991)
Mol. Cell. Biol.
, vol.11
, pp. 5372-5380
-
-
Ray, B.L.1
White, C.I.2
Haber, J.E.3
-
32
-
-
0024535443
-
Cloning of human telomeres by complementation in yeast
-
Cross S.H., Allshire R.C., McKay S.J., McGill N.I., and Cooke H.J. Cloning of human telomeres by complementation in yeast. Nature 338 (1989) 771-774
-
(1989)
Nature
, vol.338
, pp. 771-774
-
-
Cross, S.H.1
Allshire, R.C.2
McKay, S.J.3
McGill, N.I.4
Cooke, H.J.5
-
33
-
-
0031607394
-
Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae
-
Weng Y.S., and Nickoloff J.A. Evidence for independent mismatch repair processing on opposite sides of a double-strand break in Saccharomyces cerevisiae. Genetics 148 (1998) 59-70
-
(1998)
Genetics
, vol.148
, pp. 59-70
-
-
Weng, Y.S.1
Nickoloff, J.A.2
-
34
-
-
37748999305
-
Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination
-
Alvaro D., Lisby M., and Rothstein R. Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination. PLoS Genet. 3 (2007) 2439-2449
-
(2007)
PLoS Genet.
, vol.3
, pp. 2439-2449
-
-
Alvaro, D.1
Lisby, M.2
Rothstein, R.3
-
35
-
-
0035989355
-
A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52
-
Mortensen U.H., Erdeniz N., Feng Q., and Rothstein R. A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52. Genetics 161 (2002) 549-562
-
(2002)
Genetics
, vol.161
, pp. 549-562
-
-
Mortensen, U.H.1
Erdeniz, N.2
Feng, Q.3
Rothstein, R.4
-
36
-
-
0003529274
-
-
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
Sherman F., Fink G.R., and Hicks J.B. Methods in Yeast Genetics (1986), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
(1986)
Methods in Yeast Genetics
-
-
Sherman, F.1
Fink, G.R.2
Hicks, J.B.3
-
37
-
-
0032161269
-
A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
-
Zhao X., Muller E.G., and Rothstein R. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2 (1998) 329-340
-
(1998)
Mol. Cell
, vol.2
, pp. 329-340
-
-
Zhao, X.1
Muller, E.G.2
Rothstein, R.3
-
38
-
-
0024977417
-
Elevated recombination rates in transcriptionally active DNA
-
Thomas B.J., and Rothstein R. Elevated recombination rates in transcriptionally active DNA. Cell 56 (1989) 619-630
-
(1989)
Cell
, vol.56
, pp. 619-630
-
-
Thomas, B.J.1
Rothstein, R.2
-
39
-
-
0033988445
-
Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae
-
Erdeniz N., and Rothstein R. Rsp5, a ubiquitin-protein ligase, is involved in degradation of the single-stranded-DNA binding protein rfa1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 20 (2000) 224-232
-
(2000)
Mol. Cell. Biol.
, vol.20
, pp. 224-232
-
-
Erdeniz, N.1
Rothstein, R.2
-
40
-
-
0033529707
-
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
-
Winzeler E.A., Shoemaker D.D., Astromoff A., Liang H., Anderson K., Andre B., Bangham R., Benito R., Boeke J.D., Bussey H., et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285 (1999) 901-906
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
Shoemaker, D.D.2
Astromoff, A.3
Liang, H.4
Anderson, K.5
Andre, B.6
Bangham, R.7
Benito, R.8
Boeke, J.D.9
Bussey, H.10
-
41
-
-
33751565680
-
Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries
-
Alvaro D., Sunjevaric I., Reid R.J., Lisby M., Stillman D.J., and Rothstein R. Systematic hybrid LOH: a new method to reduce false positives and negatives during screening of yeast gene deletion libraries. Yeast 23 (2006) 1097-1106
-
(2006)
Yeast
, vol.23
, pp. 1097-1106
-
-
Alvaro, D.1
Sunjevaric, I.2
Reid, R.J.3
Lisby, M.4
Stillman, D.J.5
Rothstein, R.6
-
42
-
-
0036270546
-
Cloning-free genome alterations in Saccharomyce cerevisiae using adaptamer-mediated PCR
-
Reid R., Lisby M., and Rothstein R. Cloning-free genome alterations in Saccharomyce cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 350 (2002) 258-277
-
(2002)
Methods Enzymol.
, vol.350
, pp. 258-277
-
-
Reid, R.1
Lisby, M.2
Rothstein, R.3
-
43
-
-
0030974313
-
'Marker swap' plasmids: convenient tools for budding yeast molecular genetics
-
Cross F.R. 'Marker swap' plasmids: convenient tools for budding yeast molecular genetics. Yeast 13 (1997) 647-653
-
(1997)
Yeast
, vol.13
, pp. 647-653
-
-
Cross, F.R.1
-
44
-
-
0024669291
-
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
-
Sikorski R.S., and Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122 (1989) 19-27
-
(1989)
Genetics
, vol.122
, pp. 19-27
-
-
Sikorski, R.S.1
Hieter, P.2
-
45
-
-
0028079823
-
Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination
-
Rattray A.J., and Symington L.S. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138 (1994) 587-595
-
(1994)
Genetics
, vol.138
, pp. 587-595
-
-
Rattray, A.J.1
Symington, L.S.2
-
46
-
-
0028799703
-
A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination
-
Smith J., and Rothstein R. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination. Mol. Cell. Biol. 15 (1995) 1632-1641
-
(1995)
Mol. Cell. Biol.
, vol.15
, pp. 1632-1641
-
-
Smith, J.1
Rothstein, R.2
-
47
-
-
0001313535
-
The distribution in the numbers of mutants in bacterial populations
-
Lea D.E., and Coulson C.A. The distribution in the numbers of mutants in bacterial populations. J. Genet. 49 (1949) 264-285
-
(1949)
J. Genet.
, vol.49
, pp. 264-285
-
-
Lea, D.E.1
Coulson, C.A.2
-
49
-
-
0026709385
-
Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae
-
Kadyk L.C., and Hartwell L.H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132 (1992) 387-402
-
(1992)
Genetics
, vol.132
, pp. 387-402
-
-
Kadyk, L.C.1
Hartwell, L.H.2
-
50
-
-
0032712707
-
A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59
-
Bai Y., Davis A.P., and Symington L.S. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153 (1999) 1117-1130
-
(1999)
Genetics
, vol.153
, pp. 1117-1130
-
-
Bai, Y.1
Davis, A.P.2
Symington, L.S.3
-
51
-
-
0026437548
-
CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae, 12 (1992) 5736-5747
-
(published erratum appears in Mol. Cell. Biol. 13 (1993) 7202)
-
Kouprina N., Kroll E., Bannikov V., Bliskovsky V., Gizatullin R., Kirillov A., Shestopalov B., Zakharyev V., Hieter P., Spencer F., et al. CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae, 12 (1992) 5736-5747. Mol. Cell. Biol. 12 (1992) 5736-5747 (published erratum appears in Mol. Cell. Biol. 13 (1993) 7202)
-
(1992)
Mol. Cell. Biol.
, vol.12
, pp. 5736-5747
-
-
Kouprina, N.1
Kroll, E.2
Bannikov, V.3
Bliskovsky, V.4
Gizatullin, R.5
Kirillov, A.6
Shestopalov, B.7
Zakharyev, V.8
Hieter, P.9
Spencer, F.10
-
52
-
-
0031406163
-
Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae
-
Selva E.M., Maderazo A.B., and Lahue R.S. Differential effects of the mismatch repair genes MSH2 and MSH3 on homeologous recombination in Saccharomyces cerevisiae. Mol. Gen. Genet. 257 (1997) 71-82
-
(1997)
Mol. Gen. Genet.
, vol.257
, pp. 71-82
-
-
Selva, E.M.1
Maderazo, A.B.2
Lahue, R.S.3
-
53
-
-
0028918202
-
Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae
-
Selva E.M., New L., Crouse G.F., and Lahue R.S. Mismatch correction acts as a barrier to homeologous recombination in Saccharomyces cerevisiae. Genetics 139 (1995) 1175-1188
-
(1995)
Genetics
, vol.139
, pp. 1175-1188
-
-
Selva, E.M.1
New, L.2
Crouse, G.F.3
Lahue, R.S.4
-
54
-
-
0029802538
-
The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss
-
Chambers S.R., Hunter N., Louis E.J., and Borts R.H. The mismatch repair system reduces meiotic homeologous recombination and stimulates recombination-dependent chromosome loss. Mol. Cell. Biol. 16 (1996) 6110-6120
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 6110-6120
-
-
Chambers, S.R.1
Hunter, N.2
Louis, E.J.3
Borts, R.H.4
-
55
-
-
0024255090
-
Genetic control of chromosome stability in the yeast Saccharomyces cerevisiae
-
Kouprina N., Pashina O.B., Nikolaishwili N.T., Tsouladze A.M., and Larionov V.L. Genetic control of chromosome stability in the yeast Saccharomyces cerevisiae. Yeast 4 (1988) 257-269
-
(1988)
Yeast
, vol.4
, pp. 257-269
-
-
Kouprina, N.1
Pashina, O.B.2
Nikolaishwili, N.T.3
Tsouladze, A.M.4
Larionov, V.L.5
-
56
-
-
0035051062
-
Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
-
Hanna J.S., Kroll E.S., Lundblad V., and Spencer F.A. Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol. Cell. Biol. 21 (2001) 3144-3158
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 3144-3158
-
-
Hanna, J.S.1
Kroll, E.S.2
Lundblad, V.3
Spencer, F.A.4
-
57
-
-
0025137506
-
Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae
-
Spencer F., Gerring S.L., Connelly C., and Hieter P. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124 (1990) 237-249
-
(1990)
Genetics
, vol.124
, pp. 237-249
-
-
Spencer, F.1
Gerring, S.L.2
Connelly, C.3
Hieter, P.4
-
58
-
-
0026502128
-
Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase
-
Miles J., and Formosa T. Protein affinity chromatography with purified yeast DNA polymerase alpha detects proteins that bind to DNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 89 (1992) 1276-1280
-
(1992)
Proc. Natl. Acad. Sci. U.S.A.
, vol.89
, pp. 1276-1280
-
-
Miles, J.1
Formosa, T.2
-
59
-
-
0032497566
-
Cohesion between sister chromatids must be established during DNA replication
-
Uhlmann F., and Nasmyth K. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8 (1998) 1095-1101
-
(1998)
Curr. Biol.
, vol.8
, pp. 1095-1101
-
-
Uhlmann, F.1
Nasmyth, K.2
-
60
-
-
0033597717
-
Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region
-
Blat Y., and Kleckner N. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98 (1999) 249-259
-
(1999)
Cell
, vol.98
, pp. 249-259
-
-
Blat, Y.1
Kleckner, N.2
-
61
-
-
0033578935
-
Identification of cohesin association sites at centromeres and along chromosome arms
-
Tanaka T., Cosma M.P., Wirth K., and Nasmyth K. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98 (1999) 847-858
-
(1999)
Cell
, vol.98
, pp. 847-858
-
-
Tanaka, T.1
Cosma, M.P.2
Wirth, K.3
Nasmyth, K.4
-
62
-
-
0034722387
-
Chromosomal addresses of the cohesin component Mcd1p
-
Laloraya S., Guacci V., and Koshland D. Chromosomal addresses of the cohesin component Mcd1p. J. Cell Biol. 151 (2000) 1047-1056
-
(2000)
J. Cell Biol.
, vol.151
, pp. 1047-1056
-
-
Laloraya, S.1
Guacci, V.2
Koshland, D.3
-
63
-
-
33645119826
-
Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity
-
Krogh B.O., Llorente B., Lam A., and Symington L.S. Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity. Genetics 171 (2005) 1561-1570
-
(2005)
Genetics
, vol.171
, pp. 1561-1570
-
-
Krogh, B.O.1
Llorente, B.2
Lam, A.3
Symington, L.S.4
-
64
-
-
0032721091
-
The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae
-
Bressan D.A., Baxter B.K., and Petrini J.H. The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 19 (1999) 7681-7687
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 7681-7687
-
-
Bressan, D.A.1
Baxter, B.K.2
Petrini, J.H.3
-
65
-
-
0242605613
-
Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast
-
Gonzalez-Barrera S., Cortes-Ledesma F., Wellinger R.E., and Aguilera A. Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol. Cell 11 (2003) 1661-1671
-
(2003)
Mol. Cell
, vol.11
, pp. 1661-1671
-
-
Gonzalez-Barrera, S.1
Cortes-Ledesma, F.2
Wellinger, R.E.3
Aguilera, A.4
-
67
-
-
0027731437
-
Initiation at closely spaced replication origins in a yeast chromosome
-
Brewer B.J., and Fangman W.L. Initiation at closely spaced replication origins in a yeast chromosome. Science 262 (1993) 1728-1731
-
(1993)
Science
, vol.262
, pp. 1728-1731
-
-
Brewer, B.J.1
Fangman, W.L.2
-
68
-
-
0025756992
-
A yeast origin of replication is activated late in S phase
-
Ferguson B.M., Brewer B.J., Reynolds A.E., and Fangman W.L. A yeast origin of replication is activated late in S phase. Cell 65 (1991) 507-515
-
(1991)
Cell
, vol.65
, pp. 507-515
-
-
Ferguson, B.M.1
Brewer, B.J.2
Reynolds, A.E.3
Fangman, W.L.4
-
69
-
-
0029781449
-
Multiple determinants controlling activation of yeast replication origins late in S phase
-
Friedman K.L., Diller J.D., Ferguson B.M., Nyland S.V., Brewer B.J., and Fangman W.L. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev. 10 (1996) 1595-1607
-
(1996)
Genes Dev.
, vol.10
, pp. 1595-1607
-
-
Friedman, K.L.1
Diller, J.D.2
Ferguson, B.M.3
Nyland, S.V.4
Brewer, B.J.5
Fangman, W.L.6
-
70
-
-
34547112848
-
Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization
-
Stoler S., Rogers K., Weitze S., Morey L., Fitzgerald-Hayes M., and Baker R.E. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 10571-10576
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 10571-10576
-
-
Stoler, S.1
Rogers, K.2
Weitze, S.3
Morey, L.4
Fitzgerald-Hayes, M.5
Baker, R.E.6
-
71
-
-
0036671363
-
Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form
-
Kagawa W., Kurumizaka H., Ishitani R., Fukai S., Nureki O., Shibata T., and Yokoyama S. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol. Cell 10 (2002) 359-371
-
(2002)
Mol. Cell
, vol.10
, pp. 359-371
-
-
Kagawa, W.1
Kurumizaka, H.2
Ishitani, R.3
Fukai, S.4
Nureki, O.5
Shibata, T.6
Yokoyama, S.7
-
72
-
-
0037108889
-
Structure of the single-strand annealing domain of human RAD52 protein crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form
-
Singleton M.R., Wentzell L.M., Liu Y., West S.C., Wigley D.B., Kagawa W., Kurumizaka H., Ishitani R., Fukai S., Nureki O., et al. Structure of the single-strand annealing domain of human RAD52 protein crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 13492-13497
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 13492-13497
-
-
Singleton, M.R.1
Wentzell, L.M.2
Liu, Y.3
West, S.C.4
Wigley, D.B.5
Kagawa, W.6
Kurumizaka, H.7
Ishitani, R.8
Fukai, S.9
Nureki, O.10
-
73
-
-
62549160340
-
Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules
-
Nimonkar A.V., Sica R.A., and Kowalczykowski S.C. Rad52 promotes second-end DNA capture in double-stranded break repair to form complement-stabilized joint molecules. Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 3077-3082
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 3077-3082
-
-
Nimonkar, A.V.1
Sica, R.A.2
Kowalczykowski, S.C.3
-
74
-
-
39549114273
-
DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair
-
McIlwraith M.J., and West S.C. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol. Cell 29 (2008) 510-516
-
(2008)
Mol. Cell
, vol.29
, pp. 510-516
-
-
McIlwraith, M.J.1
West, S.C.2
|