메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages

Bayesian modeling of ChIP-chip data using latent variables

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN HIERARCHICAL MODEL; DECONVOLUTION MODELS; HISTONE MODIFICATION; HUMAN TRANSCRIPTION FACTORS; INDICATOR VARIABLES; MODEL-BASED METHOD; POSTERIOR DISTRIBUTIONS; SLIDING WINDOW METHODS;

EID: 71049155879     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-10-352     Document Type: Article
Times cited : (5)

References (35)
  • 4
    • 34249068213 scopus 로고    scopus 로고
    • Whole-Genome analysis of histone H3 lysine 27 trimethylation in arabidopsis
    • 1852588,1852588, 17439305, 10.1371/journal.pbio.0050129
    • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Goodrich J, Jacobsen SE. Whole-Genome analysis of histone H3 lysine 27 trimethylation in arabidopsis. PLoS Biol 2007, 5(5):e129. 1852588,1852588, 17439305, 10.1371/journal.pbio.0050129.
    • (2007) PLoS Biol , vol.5 , Issue.5
    • Zhang, X.1    Clarenz, O.2    Cokus, S.3    Bernatavichute, Y.V.4    Goodrich, J.5    Jacobsen, S.E.6
  • 6
    • 24644462724 scopus 로고    scopus 로고
    • TileMap: create chromosomal map of tiling array hybridizations
    • 10.1093/bioinformatics/bti593, 16046496
    • Ji H, Wong WH. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 2005, 21(18):3629-3636. 10.1093/bioinformatics/bti593, 16046496.
    • (2005) Bioinformatics , vol.21 , Issue.18 , pp. 3629-3636
    • Ji, H.1    Wong, W.H.2
  • 7
    • 33744473305 scopus 로고    scopus 로고
    • Multiple testing methods for ChIP-chip high density oligonucleotide array data
    • 10.1089/cmb.2006.13.579, 16706714
    • Keles S, Laan MJ, Dudoit S, Cawley SE. Multiple testing methods for ChIP-chip high density oligonucleotide array data. Journal of Computational Biology 2006, 13(3):579-613. 10.1089/cmb.2006.13.579, 16706714.
    • (2006) Journal of Computational Biology , vol.13 , Issue.3 , pp. 579-613
    • Keles, S.1    Laan, M.J.2    Dudoit, S.3    Cawley, S.E.4
  • 8
    • 24644438062 scopus 로고    scopus 로고
    • A hidden markov model for analayzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences
    • Li W, Meyer CA, Liu XS. A hidden markov model for analayzing ChIP-chip experiments on genome tiling arrays and its application to p53 binding sequences. Bioinformatics 2005, 21(Suppl 1):274-282.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL 1 , pp. 274-282
    • Li, W.1    Meyer, C.A.2    Liu, X.S.3
  • 9
    • 33745295639 scopus 로고    scopus 로고
    • A hidden markov model approach for determining expression from genomic tiling microarrays
    • 1481622, 16672042, 10.1186/1471-2105-7-239
    • Munch K, Gardner PP, Arctander P, Krogh A. A hidden markov model approach for determining expression from genomic tiling microarrays. BMC Bioinformatics 2006, 7:239. 1481622, 16672042, 10.1186/1471-2105-7-239.
    • (2006) BMC Bioinformatics , vol.7 , pp. 239
    • Munch, K.1    Gardner, P.P.2    Arctander, P.3    Krogh, A.4
  • 10
    • 52049119933 scopus 로고    scopus 로고
    • Parameter estimation for robust HMM analysis of ChIP-chip data
    • 2536674, 18706106, 10.1186/1471-2105-9-343
    • Humburg P, Bulger D, Stone G. Parameter estimation for robust HMM analysis of ChIP-chip data. BMC Bioinformatics 2008, 9:343. 2536674, 18706106, 10.1186/1471-2105-9-343.
    • (2008) BMC Bioinformatics , vol.9 , pp. 343
    • Humburg, P.1    Bulger, D.2    Stone, G.3
  • 12
    • 34247265463 scopus 로고    scopus 로고
    • Mixture modeling for genome-wide localization of transcription factors
    • 10.1111/j.1541-0420.2005.00659.x, 17447925
    • Keles S. Mixture modeling for genome-wide localization of transcription factors. Biometrics 2007, 63:10-21. 10.1111/j.1541-0420.2005.00659.x, 17447925.
    • (2007) Biometrics , vol.63 , pp. 10-21
    • Keles, S.1
  • 13
    • 43749122090 scopus 로고    scopus 로고
    • A flexible and powerful bayesian hierarchical model for ChIP-chip experiments
    • 10.1111/j.1541-0420.2007.00899.x, 17888037
    • Gottardo R, Li W, Johnson WE, Liu XS. A flexible and powerful bayesian hierarchical model for ChIP-chip experiments. Biometrics 2008, 64:468-478. 10.1111/j.1541-0420.2007.00899.x, 17888037.
    • (2008) Biometrics , vol.64 , pp. 468-478
    • Gottardo, R.1    Li, W.2    Johnson, W.E.3    Liu, X.S.4
  • 14
    • 34548396885 scopus 로고    scopus 로고
    • ChIP-chip: data, model, and analysis
    • 10.1111/j.1541-0420.2007.00768.x, 17825010
    • Zheng M, Barrera LO, Ren B, Wu YN. ChIP-chip: data, model, and analysis. Biometrics 2007, 63(3):787-796. 10.1111/j.1541-0420.2007.00768.x, 17825010.
    • (2007) Biometrics , vol.63 , Issue.3 , pp. 787-796
    • Zheng, M.1    Barrera, L.O.2    Ren, B.3    Wu, Y.N.4
  • 15
    • 33747856481 scopus 로고    scopus 로고
    • Transcript mapping with high-density oligonucleotide tiling arrays
    • 10.1093/bioinformatics/btl289, 16787969
    • Huber W, Toedling J, Steinmetz LM. Transcript mapping with high-density oligonucleotide tiling arrays. Bioinformatics 2006, 22(16):1963-1970. 10.1093/bioinformatics/btl289, 16787969.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1963-1970
    • Huber, W.1    Toedling, J.2    Steinmetz, L.M.3
  • 16
    • 38849086840 scopus 로고    scopus 로고
    • Model-based deconvolution of genome-wide DNA binding
    • 10.1093/bioinformatics/btm592, 18056063
    • Reiss DJ, Facciotti MT, Baliga NS. Model-based deconvolution of genome-wide DNA binding. Bioinformatics 2008, 24(3):396-403. 10.1093/bioinformatics/btm592, 18056063.
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 396-403
    • Reiss, D.J.1    Facciotti, M.T.2    Baliga, N.S.3
  • 17
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • Rabiner LR. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 1989, 77:257-286.
    • (1989) Proceedings of the IEEE , vol.77 , pp. 257-286
    • Rabiner, L.R.1
  • 18
    • 33845221523 scopus 로고
    • On conditional and intrinsic autoregrssions
    • Besag J, Kooperberg C. On conditional and intrinsic autoregrssions. Biometrika 1995, 82:733-746.
    • (1995) Biometrika , vol.82 , pp. 733-746
    • Besag, J.1    Kooperberg, C.2
  • 20
    • 0002013327 scopus 로고    scopus 로고
    • Bayesian model comparison via jump diffusions
    • Chapman and Hall, Gilks WR, Richardson S, Spiegel-halter DJ
    • Phillips DB, Smith AFM. Bayesian model comparison via jump diffusions. Markov chain Monte Carlo in Practice 1996, 215-239. Chapman and Hall, Gilks WR, Richardson S, Spiegel-halter DJ.
    • (1996) Markov chain Monte Carlo in Practice , pp. 215-239
    • Phillips, D.B.1    Smith, A.F.M.2
  • 22
    • 0034403006 scopus 로고    scopus 로고
    • Evolutionary Monte Carlo sampling: applications to Cp model sampling and change-point problem
    • Liang F, Wong WH. Evolutionary Monte Carlo sampling: applications to Cp model sampling and change-point problem. Statistica Sinica 2000, 10:317-342.
    • (2000) Statistica Sinica , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 23
    • 69049089832 scopus 로고    scopus 로고
    • Improving SAMC using smoothing methods: theory and applications to bayesian model selection problems
    • Liang F. Improving SAMC using smoothing methods: theory and applications to bayesian model selection problems. The Annals of Statistics 2009, 37:2626-2654.
    • (2009) The Annals of Statistics , vol.37 , pp. 2626-2654
    • Liang, F.1
  • 24
    • 0003606575 scopus 로고
    • A generic approach to posterior integration and gibbs sampling
    • Purdue University, West Lafayette, Indiana
    • Müller P. A generic approach to posterior integration and gibbs sampling. Technical Report 1991, 09. Purdue University, West Lafayette, Indiana.
    • (1991) Technical Report , vol.9
    • Müller, P.1
  • 25
    • 2142732441 scopus 로고    scopus 로고
    • Large-scale simultaneous hypothesis testing:the choice of a null hypothesis
    • Efron B. Large-scale simultaneous hypothesis testing:the choice of a null hypothesis. Journal of the American Statistical Association 2004, 99:96-104.
    • (2004) Journal of the American Statistical Association , vol.99 , pp. 96-104
    • Efron, B.1
  • 26
    • 57249090966 scopus 로고    scopus 로고
    • Estimation the false discovery rate using the stochastic approximation algorithm
    • Liang F, Zhang J. Estimation the false discovery rate using the stochastic approximation algorithm. Biometrika 2008, 95(4):961-977.
    • (2008) Biometrika , vol.95 , Issue.4 , pp. 961-977
    • Liang, F.1    Zhang, J.2
  • 28
    • 84888289372 scopus 로고    scopus 로고
    • BAC software
    • BAC software. , http://www.bioconductor.org/packages/2.2/bioc
  • 29
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 1992, 7:457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 30
    • 84888298929 scopus 로고    scopus 로고
    • BAC and tileHMM software
    • BAC and tileHMM software. , http://cran.r-project. org/web/packages
  • 31
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand WM. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 1971, 66:846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 33
    • 0037316303 scopus 로고    scopus 로고
    • A comparison of normalization methods for high density ologonucleotide array data based on variance and bias
    • 10.1093/bioinformatics/19.2.185, 12538238
    • Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density ologonucleotide array data based on variance and bias. Bioinformatics 2003, 19:185-193. 10.1093/bioinformatics/19.2.185, 12538238.
    • (2003) Bioinformatics , vol.19 , pp. 185-193
    • Bolstad, B.M.1    Irizarry, R.A.2    Astrand, M.3    Speed, T.P.4
  • 34
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition 1997, 30:1145-1159.
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.1
  • 35
    • 84888287375 scopus 로고    scopus 로고
    • R package: LatentChIP
    • R package: LatentChIP. , http://www.stat.tamu.edu/~fliang


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.