메뉴 건너뛰기




Volumn 37, Issue 5 B, 2009, Pages 2626-2654

Improving samc using smoothing methods: Theory and applications to bayesian model selection problems

Author keywords

Markov chain Monte Carlo; Model selection; Reversible jump; Smoothing; Stochastic approximation Monte Carlo

Indexed keywords


EID: 69049089832     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-AOS577     Document Type: Article
Times cited : (26)

References (43)
  • 1
    • 0007303872 scopus 로고    scopus 로고
    • Smoothing sparse multinomial data using local polynomial fitting
    • Aerts, M., Augustyns, I. and Janssen, P. (1997). Smoothing sparse multinomial data using local polynomial fitting. J. Nonparametr. Statist. 8 127-147. MR1486997 (Pubitemid 127541911)
    • (1997) Journal of Nonparametric Statistics , vol.8 , Issue.2 , pp. 127-147
    • Aerts, M.1    Augustyns, I.2    Janssen, P.3
  • 2
    • 33244461073 scopus 로고    scopus 로고
    • Stability of stochastic approximation under verifiable conditions
    • MR2177157
    • Andrieu, C., Moulines, É. and Priouret, P. (2005). Stability of stochastic approximation under verifiable conditions. SIAM J. Control Optim. 44 283-312. MR2177157
    • (2005) SIAM J. Control Optim , vol.44 , pp. 283-312
    • Andrieu, C.1    Moulines, É.2    Priouret, P.3
  • 4
    • 21144462443 scopus 로고
    • A Bayesian analysis for change point problems
    • MR1212493
    • Barry, D. and Hartigan, J. A. (1993). A Bayesian analysis for change point problems. J. Amer. Statist. Assoc. 88 309-319. MR1212493
    • (1993) J. Amer. Statist. Assoc , vol.88 , pp. 309-319
    • Barry, D.1    Hartigan, J.A.2
  • 6
    • 0000106469 scopus 로고
    • Multicanonical algorithms for 1st order phase-transitions
    • Berg, B.A.andNeuhaus, T. (1991). Multicanonical algorithms for 1st order phase-transitions. Phys. Lett. B 267 249-253.
    • (1991) Phys. Lett. B , vol.267 , pp. 249-253
    • Berg, B.A.1    Neuhaus, T.2
  • 7
    • 0010931337 scopus 로고
    • Smoothing sparse contingency tables. Sankhyā
    • MR0917903
    • Burman, P. (1987). Smoothing sparse contingency tables. Sankhyā Ser. A 49 24-36. MR0917903
    • (1987) Ser. A , vol.49 , pp. 24-36
    • Burman, P.1
  • 9
    • 69049113494 scopus 로고    scopus 로고
    • Phylogenetic tree reconstruction using stochastic approximation Monte Carlo
    • To appear
    • Cheon, S.Y. and Liang, F. (2007). Phylogenetic tree reconstruction using stochastic approximation Monte Carlo. BioSystems. To appear.
    • (2007) BioSystems.
    • Cheon, S.Y.1    Liang, F.2
  • 10
    • 0001908541 scopus 로고
    • The construction and properties of boundary kernels for smoothing sparse multinomials
    • Dong, J. and Simonoff, J. S. (1994). The construction and properties of boundary kernels for smoothing sparse multinomials. J. Comput. Graph. Statist. 3 57-66.
    • (1994) J. Comput. Graph. Statist , vol.3 , pp. 57-66
    • Dong, J.1    Simonoff, J.S.2
  • 11
    • 84950447968 scopus 로고
    • Local polynomial kernel regression for generalized linear models and quasi-likelihood functions
    • MR1325121
    • Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. J. Amer. Statist. Assoc. 90 141-150. MR1325121
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 141-150
    • Fan, J.1    Heckman, N.E.2    Wand, M.P.3
  • 12
    • 27844557035 scopus 로고
    • Restimates in Taylor's theorem
    • MR1048439
    • Folland, G. B. (1990). Restimates in Taylor's theorem. American Math. Monthly 97 233-235. MR1048439
    • (1990) American Math. Monthly , vol.97 , pp. 233-235
    • Folland, G.B.1
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
    • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Machine Intelligence 6 721-741.
    • (1984) IEEE Trans. Pattern Anal. Machine Intelligence. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 15
    • 84950437936 scopus 로고
    • Annealing Markov chain Monte Carlo with applications to ancestral inference
    • Geyer, C.J. and Thompson, E. A. (1995). Annealing Markov chain Monte Carlo with applications to ancestral inference. J. Amer. Statist. Assoc. 90 909-920.
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 909-920
    • Geyer, C.J.1    Thompson, E.A.2
  • 16
    • 0032333313 scopus 로고    scopus 로고
    • Adaptive Markov chain Monte Carlo through regeneration
    • MR1649199
    • Gilks, W.R., Roberts, R. O. and Sahu, S. K. (1998). Adaptive Markov chain Monte Carlo through regeneration. J. Amer. Statist. Assoc. 93 1045-1054. MR1649199
    • (1998) J. Amer. Statist. Assoc , vol.93 , pp. 1045-1054
    • Gilks, W.R.1    Roberts, R.O.2    Sahu, S.K.3
  • 17
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • MR1380810
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732. MR1380810
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 18
    • 13144294075 scopus 로고    scopus 로고
    • A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems
    • MR1630899
    • Gu, M.G. and Kong, F. H. (1998). A stochastic approximation algorithm with Markov chain Monte Carlo method for incomplete data estimation problems. Proc. Natl. Acad. Sci. USA 95 7270-7274. MR1630899
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 7270-7274
    • Gu, M.G.1    Kong, F.H.2
  • 20
    • 84985571892 scopus 로고
    • On smoothing sparse multinomial data
    • MR0899373
    • Hall, P. and Titterington, D. M. (1987). On smoothing sparse multinomial data. Austral. J. Statist. 29 19-37. MR0899373
    • (1987) Austral. J. Statist , vol.29 , pp. 19-37
    • Hall, P.1    Titterington, D.M.2
  • 21
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 97-109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 22
    • 11944274075 scopus 로고
    • Monte Carlo simulation and global optimization without parameters
    • Hesselbo, B. and Stinchcomble, R. B. (1995). Monte Carlo simulation and global optimization without parameters. Phys. Rev. Lett. 74 2151-2155.
    • (1995) Phys. Rev. Lett , vol.74 , pp. 2151-2155
    • Hesselbo, B.1    Stinchcomble, R.B.2
  • 23
    • 0030516672 scopus 로고    scopus 로고
    • Exchange Monte Carlo Method and Application to Spin Glass Simulations
    • Hukushima K. and Nemoto, K. (1996). Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65 1604-1608. (Pubitemid 126456584)
    • (1996) Journal of the Physical Society of Japan , vol.65 , Issue.6 , pp. 1604-1608
    • Hukushima, K.1    Nemoto, K.2
  • 24
    • 33748779178 scopus 로고    scopus 로고
    • Equi-energy sampler with applications to statistical inference and statistical mechanics (with discussion
    • MR2283711
    • Kou, S.C., Zhou, Q. and Wong, W. H. (2006). Equi-energy sampler with applications to statistical inference and statistical mechanics (with discussion). Ann. Statist. 34 1581-1619. MR2283711
    • (2006) Ann. Statist , vol.34 , pp. 1581-1619
    • Kou, S.C.1    Zhou, Q.2    Wong, W.H.3
  • 26
    • 29144446035 scopus 로고    scopus 로고
    • Generalized Wang-Landau algorithm for Monte Carlo computation
    • MR2236444
    • Liang, F. (2005). Generalized Wang-Landau algorithm for Monte Carlo computation. J. Amer. Statist. Assoc. 100 1311-1327. MR2236444
    • (2005) J. Amer. Statist. Assoc , vol.100 , pp. 1311-1327
    • Liang, F.1
  • 27
    • 34548179892 scopus 로고    scopus 로고
    • Annealing stochastic approximation Monte Carlo for neural network training
    • Liang, F. (2007). Annealing stochastic approximation Monte Carlo for neural network training. Machine Learning 68 201-233.
    • (2007) Machine Learning , vol.68 , pp. 201-233
    • Liang, F.1
  • 28
    • 33947215681 scopus 로고    scopus 로고
    • Stochastic approximation in Monte Carlo computation
    • MR2345544
    • Liang, F., Liu, C. and Carroll, R. J. (2007). Stochastic approximation in Monte Carlo computation. J. Amer. Statist. Assoc. 102 305-320. MR2345544
    • (2007) J. Amer. Statist. Assoc , vol.102 , pp. 305-320
    • Liang, F.1    Liu, C.2    Carroll, R.J.3
  • 29
    • 0034403006 scopus 로고    scopus 로고
    • p model sampling and change-point problem
    • Liang, F. and Wong, W. H. (2000). Evolutionary Monte Carlo sampling: Applications to Cp model sampling and change-point problem. Statist. Sinica 10 317-342.
    • (2000) Statist. Sinica , vol.10 , pp. 317-342
    • Liang, F.1    Wong, W.H.2
  • 30
    • 1542573405 scopus 로고    scopus 로고
    • Real parameter evolutionary Monte Carlo with applications in Bayesian mixture models
    • MR1946432
    • Liang, F. and Wong, W. H. (2001). Real parameter evolutionary Monte Carlo with applications in Bayesian mixture models. J. Amer. Statist. Assoc. 96 653-666. MR1946432
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 653-666
    • Liang, F.1    Wong, W.H.2
  • 31
    • 33644899039 scopus 로고
    • Simulated tempering: A new Monte Carlo scheme
    • Marinari, E. and Parisi, G. (1992). Simulated tempering: A new Monte Carlo scheme. Europhys. Lett. 19 451-458.
    • (1992) Europhys. Lett , vol.19 , pp. 451-458
    • Marinari, E.1    Parisi, G.2
  • 33
    • 0037961506 scopus 로고    scopus 로고
    • Replica-exchange multicanonical and multicanonical replica exchange Monte Carlo simulations of peptides. I. Formula and benchmark test
    • Mitsutake, A., Sugita, Y. and Okamoto, Y. (2003). Replica-exchange multicanonical and multicanonical replica exchange Monte Carlo simulations of peptides. I. Formula and benchmark test. J. Chem. Phys. 118 6676-6688.
    • (2003) J. Chem. Phys , vol.118 , pp. 6676-6688
    • Mitsutake, A.1    Sugita, Y.2    Okamoto, Y.3
  • 34
    • 0002013327 scopus 로고    scopus 로고
    • Bayesian model comparison via jump diffusions
    • (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds). Chapman and Hall, London. MR1397970
    • Phillips, D. B. and Smith, A. F. M. (1996). Bayesian model comparison via jump diffusions. In Markov Chain Monte Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.) 215-239. Chapman and Hall, London. MR1397970
    • (1996) Markov Chain Monte Carlo in Practice , pp. 215-239
    • Phillips, D.B.1    Smith, A.F.M.2
  • 35
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
    • MR1399158
    • Roberts, G. O. and Tweedie, R. L. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95-110. MR1399158
    • (1996) Biometrika , vol.83 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 36
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rate for Markov chain Monte Carlo
    • MR1340509
    • Rosenthal, J. S. (1995). Minorization conditions and convergence rate for Markov chain Monte Carlo. J. Amer. Statist. Assoc. 90 558-566. MR1340509
    • (1995) J. Amer. Statist. Assoc , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 37
    • 0032373944 scopus 로고    scopus 로고
    • Three sides of smoothing: Categorical data smoothing, nonparametric regression, and density estimation
    • Simonoff, J. S. (1998). Three sides of smoothing: categorical data smoothing, nonparametric regression, and density estimation. Internat. Statist. Rev. 66 137-156.
    • (1998) Internat. Statist. Rev , vol.66 , pp. 137-156
    • Simonoff, J.S.1
  • 38
    • 0031384060 scopus 로고    scopus 로고
    • On the convergence of stochastic iterative algorithms and their applications to machine learning
    • A short version of this paper was published in, San Diego, USA
    • TadiĆ, V. (1997). On the convergence of stochastic iterative algorithms and their applications to machine learning. A short version of this paper was published in Proc. 36th Conf. on Decision and Control 2281-2286. San Diego, USA.
    • (1997) Proc. 36th Conf. on Decision and Control , pp. 2281-2286
    • Tadić, V.1
  • 39
    • 0000589160 scopus 로고
    • Local likelihood estimation
    • MR0898359
    • Tibshirani, R. and Hastie, T. (1987). Local likelihood estimation. J. Amer. Statist. Assoc. 82 559-568. MR0898359
    • (1987) J. Amer. Statist. Assoc , vol.82 , pp. 559-568
    • Tibshirani, R.1    Hastie, T.2
  • 41
    • 6644221271 scopus 로고    scopus 로고
    • Efficient, multiple-range random walk algorithm to calculate the density of states
    • Wang, F. and Landau, D. P. (2001). Efficient, multiple-range random walk algorithm to calculate the density of states. Phys. Rev. Lett. 86 2050-2053.
    • (2001) Phys. Rev. Lett , vol.86 , pp. 2050-2053
    • Wang, F.1    Landau, D.P.2
  • 42
    • 0031447220 scopus 로고    scopus 로고
    • Dynamic weighting in Monte Carlo and optimization
    • MR1492410
    • Wong, W.H. and Liang, F. (1997). Dynamic weighting in Monte Carlo and optimization. Proc. Natl. Acad. Sci. 94 14220-14224. MR1492410
    • (1997) Proc. Natl. Acad. Sci , vol.94 , pp. 14220-14224
    • Wong, W.H.1    Liang, F.2
  • 43
    • 33644756784 scopus 로고    scopus 로고
    • On the converges of Markovian stochastic algorithms with rapidly decreasing ergodicity rates
    • MR1687636
    • Younes, L. (1999). On the converges of Markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastic Stochastic Rep. 65 177-228. MR1687636
    • (1999) Stochastic Stochastic Rep , vol.65 , pp. 177-228
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.