메뉴 건너뛰기




Volumn 181, Issue 1, 2010, Pages 78-91

Tension spline approach for the numerical solution of nonlinear Klein-Gordon equation

Author keywords

Convergence; Finite difference; Klein Gordon equation; Non polynomial spline; Stability analysis

Indexed keywords

APPROXIMATE EXPRESSIONS; DIFFERENCE SCHEMES; DISPERSION RELATIONS; DNA DYNAMICS; FERROMAGNETIC DOMAIN WALLS; FINITE DIFFERENCE; FINITE DIFFERENCE APPROXIMATIONS; JOSEPHSON JUNCTIONS; KLEIN-GORDON EQUATION; LOCAL TRUNCATION ERRORS; NONLINEAR KLEIN-GORDON EQUATION; NUMERICAL EXAMPLE; NUMERICAL SOLUTION; PHYSICAL PHENOMENA; POLYNOMIAL SPLINES; STABILITY ANALYSIS; STABILITY AND CONVERGENCE; STRONG NONLINEARITY; TENSION SPLINE;

EID: 70450224469     PISSN: 00104655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cpc.2009.09.001     Document Type: Article
Times cited : (60)

References (23)
  • 1
    • 34249032106 scopus 로고    scopus 로고
    • Numerical solution of nonlinear Klein-Gordon equations by variational iteration method
    • Abbasbandy S. Numerical solution of nonlinear Klein-Gordon equations by variational iteration method. Internat. J. Numer. Methods Engrg. 70 (2007) 876-881
    • (2007) Internat. J. Numer. Methods Engrg. , vol.70 , pp. 876-881
    • Abbasbandy, S.1
  • 6
    • 0034458833 scopus 로고    scopus 로고
    • A linearly implicit one-step time integration scheme for nonlinear hyperbolic equations
    • Chawla M.M., and Al-Zanaidi M.A. A linearly implicit one-step time integration scheme for nonlinear hyperbolic equations. Int. J. Comput. Math. 76 (2001) 349-361
    • (2001) Int. J. Comput. Math. , vol.76 , pp. 349-361
    • Chawla, M.M.1    Al-Zanaidi, M.A.2
  • 7
    • 66049106086 scopus 로고    scopus 로고
    • Fourth-order compact scheme for the one-dimensional sine-Gordon equation
    • Cui M. Fourth-order compact scheme for the one-dimensional sine-Gordon equation. Numer. Methods Partial Differential Equations 25 (2009) 685-711
    • (2009) Numer. Methods Partial Differential Equations , vol.25 , pp. 685-711
    • Cui, M.1
  • 8
    • 67349194320 scopus 로고    scopus 로고
    • Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions
    • Dehghan M., and Shokri A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230 (2009) 400-410
    • (2009) J. Comput. Appl. Math. , vol.230 , pp. 400-410
    • Dehghan, M.1    Shokri, A.2
  • 10
    • 0038577058 scopus 로고    scopus 로고
    • The decomposition method for studying the Klein-Gordon equation
    • El-Sayed S.M. The decomposition method for studying the Klein-Gordon equation. Chaos Solitons Fractals 18 5 (2003) 1025-1030
    • (2003) Chaos Solitons Fractals , vol.18 , Issue.5 , pp. 1025-1030
    • El-Sayed, S.M.1
  • 12
    • 84894226169 scopus 로고    scopus 로고
    • Accuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discritizations
    • Hong J., Jiang S., and Li C. Accuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discritizations. Numer. Math. 112 (2009) 1-23
    • (2009) Numer. Math. , vol.112 , pp. 1-23
    • Hong, J.1    Jiang, S.2    Li, C.3
  • 13
    • 38849102343 scopus 로고    scopus 로고
    • Explicit multi-symplectic methods for Hamiltonian wave equations
    • Hong J., Li C., and Liu H. Explicit multi-symplectic methods for Hamiltonian wave equations. Commun. Comput. Phys. 2 4 (2007) 662-683
    • (2007) Commun. Comput. Phys. , vol.2 , Issue.4 , pp. 662-683
    • Hong, J.1    Li, C.2    Liu, H.3
  • 14
    • 0002079274 scopus 로고
    • Analysis of four numerical schemes for a nonlinear Klein-Gordon equation
    • Jimenez S., and Vazquez L. Analysis of four numerical schemes for a nonlinear Klein-Gordon equation. Appl. Math. Comput. 35 (1990) 61-94
    • (1990) Appl. Math. Comput. , vol.35 , pp. 61-94
    • Jimenez, S.1    Vazquez, L.2
  • 15
    • 61849114184 scopus 로고    scopus 로고
    • Differential transform method for solving the linear nonlinear Klein-Gordon equation
    • Kanth A.R., and Aruna K. Differential transform method for solving the linear nonlinear Klein-Gordon equation. Comput. Phys. Comm. 180 (2009) 708-711
    • (2009) Comput. Phys. Comm. , vol.180 , pp. 708-711
    • Kanth, A.R.1    Aruna, K.2
  • 16
    • 3943090453 scopus 로고    scopus 로고
    • A numerical solution of the Klein-Gordon equation and convergence of the decomposition method
    • Kaya D., and El-Sayed S.M. A numerical solution of the Klein-Gordon equation and convergence of the decomposition method. Appl. Math. Comput. 156 (2004) 341-353
    • (2004) Appl. Math. Comput. , vol.156 , pp. 341-353
    • Kaya, D.1    El-Sayed, S.M.2
  • 17
    • 70450224620 scopus 로고
    • A fully implicit finite difference approximation to the one-dimensional wave equation using a cubic spline technique
    • Raggett G.F., and Wilson P.D. A fully implicit finite difference approximation to the one-dimensional wave equation using a cubic spline technique. J. Inst. Math. Appl. 14 (1974) 75-77
    • (1974) J. Inst. Math. Appl. , vol.14 , pp. 75-77
    • Raggett, G.F.1    Wilson, P.D.2
  • 19
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
    • Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation. J. Comput. Phys. 157 (2000) 473-499
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 20
    • 0027643950 scopus 로고
    • Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation
    • Vu-Quoc L., and Li S. Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation. Comput. Methods Appl. Mech. Engrg. 107 (1993) 341-391
    • (1993) Comput. Methods Appl. Mech. Engrg. , vol.107 , pp. 341-391
    • Vu-Quoc, L.1    Li, S.2
  • 21
    • 20444496902 scopus 로고    scopus 로고
    • High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation
    • Wang Y., and Wang B. High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation. Appl. Math. Comput. 166 (2005) 608-632
    • (2005) Appl. Math. Comput. , vol.166 , pp. 608-632
    • Wang, Y.1    Wang, B.2
  • 22
    • 0003102674 scopus 로고    scopus 로고
    • An initial-boundary value problem of a nonlinear Klein-Gordon equation
    • Wong Y.S., Chang Q., and Gong L. An initial-boundary value problem of a nonlinear Klein-Gordon equation. Appl. Math. Comput. 84 (1997) 77-93
    • (1997) Appl. Math. Comput. , vol.84 , pp. 77-93
    • Wong, Y.S.1    Chang, Q.2    Gong, L.3
  • 23
    • 43549101930 scopus 로고    scopus 로고
    • The variational iteration method for studying the Klein-Gordon equation
    • Yusufoglu E. The variational iteration method for studying the Klein-Gordon equation. Appl. Math. Lett. 21 (2008) 669-674
    • (2008) Appl. Math. Lett. , vol.21 , pp. 669-674
    • Yusufoglu, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.