-
1
-
-
34249032106
-
Numerical solution of nonlinear Klein-Gordon equations by variational iteration method
-
Abbasbandy S. Numerical solution of nonlinear Klein-Gordon equations by variational iteration method. Internat. J. Numer. Methods Engrg. 70 (2007) 876-881
-
(2007)
Internat. J. Numer. Methods Engrg.
, vol.70
, pp. 876-881
-
-
Abbasbandy, S.1
-
4
-
-
0001997591
-
Numerical solution of the sine-Gordon equation
-
Ben-Yu G., Pascual P.J., Rodriguez M.J., and Vazquez L. Numerical solution of the sine-Gordon equation. Appl. Math. Comput. 18 1 (1986) 1-14
-
(1986)
Appl. Math. Comput.
, vol.18
, Issue.1
, pp. 1-14
-
-
Ben-Yu, G.1
Pascual, P.J.2
Rodriguez, M.J.3
Vazquez, L.4
-
6
-
-
0034458833
-
A linearly implicit one-step time integration scheme for nonlinear hyperbolic equations
-
Chawla M.M., and Al-Zanaidi M.A. A linearly implicit one-step time integration scheme for nonlinear hyperbolic equations. Int. J. Comput. Math. 76 (2001) 349-361
-
(2001)
Int. J. Comput. Math.
, vol.76
, pp. 349-361
-
-
Chawla, M.M.1
Al-Zanaidi, M.A.2
-
7
-
-
66049106086
-
Fourth-order compact scheme for the one-dimensional sine-Gordon equation
-
Cui M. Fourth-order compact scheme for the one-dimensional sine-Gordon equation. Numer. Methods Partial Differential Equations 25 (2009) 685-711
-
(2009)
Numer. Methods Partial Differential Equations
, vol.25
, pp. 685-711
-
-
Cui, M.1
-
8
-
-
67349194320
-
Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions
-
Dehghan M., and Shokri A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J. Comput. Appl. Math. 230 (2009) 400-410
-
(2009)
J. Comput. Appl. Math.
, vol.230
, pp. 400-410
-
-
Dehghan, M.1
Shokri, A.2
-
9
-
-
0003421814
-
-
Academic Press, New York
-
Dodd R.K., Eilbeck J.C., Gibbon J.D., and Morris H.C. Solitons in Nonlinear Wave Equations (1982), Academic Press, New York
-
(1982)
Solitons in Nonlinear Wave Equations
-
-
Dodd, R.K.1
Eilbeck, J.C.2
Gibbon, J.D.3
Morris, H.C.4
-
10
-
-
0038577058
-
The decomposition method for studying the Klein-Gordon equation
-
El-Sayed S.M. The decomposition method for studying the Klein-Gordon equation. Chaos Solitons Fractals 18 5 (2003) 1025-1030
-
(2003)
Chaos Solitons Fractals
, vol.18
, Issue.5
, pp. 1025-1030
-
-
El-Sayed, S.M.1
-
12
-
-
84894226169
-
Accuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discritizations
-
Hong J., Jiang S., and Li C. Accuracy of classical conservation laws for Hamiltonian PDEs under Runge-Kutta discritizations. Numer. Math. 112 (2009) 1-23
-
(2009)
Numer. Math.
, vol.112
, pp. 1-23
-
-
Hong, J.1
Jiang, S.2
Li, C.3
-
13
-
-
38849102343
-
Explicit multi-symplectic methods for Hamiltonian wave equations
-
Hong J., Li C., and Liu H. Explicit multi-symplectic methods for Hamiltonian wave equations. Commun. Comput. Phys. 2 4 (2007) 662-683
-
(2007)
Commun. Comput. Phys.
, vol.2
, Issue.4
, pp. 662-683
-
-
Hong, J.1
Li, C.2
Liu, H.3
-
14
-
-
0002079274
-
Analysis of four numerical schemes for a nonlinear Klein-Gordon equation
-
Jimenez S., and Vazquez L. Analysis of four numerical schemes for a nonlinear Klein-Gordon equation. Appl. Math. Comput. 35 (1990) 61-94
-
(1990)
Appl. Math. Comput.
, vol.35
, pp. 61-94
-
-
Jimenez, S.1
Vazquez, L.2
-
15
-
-
61849114184
-
Differential transform method for solving the linear nonlinear Klein-Gordon equation
-
Kanth A.R., and Aruna K. Differential transform method for solving the linear nonlinear Klein-Gordon equation. Comput. Phys. Comm. 180 (2009) 708-711
-
(2009)
Comput. Phys. Comm.
, vol.180
, pp. 708-711
-
-
Kanth, A.R.1
Aruna, K.2
-
16
-
-
3943090453
-
A numerical solution of the Klein-Gordon equation and convergence of the decomposition method
-
Kaya D., and El-Sayed S.M. A numerical solution of the Klein-Gordon equation and convergence of the decomposition method. Appl. Math. Comput. 156 (2004) 341-353
-
(2004)
Appl. Math. Comput.
, vol.156
, pp. 341-353
-
-
Kaya, D.1
El-Sayed, S.M.2
-
17
-
-
70450224620
-
A fully implicit finite difference approximation to the one-dimensional wave equation using a cubic spline technique
-
Raggett G.F., and Wilson P.D. A fully implicit finite difference approximation to the one-dimensional wave equation using a cubic spline technique. J. Inst. Math. Appl. 14 (1974) 75-77
-
(1974)
J. Inst. Math. Appl.
, vol.14
, pp. 75-77
-
-
Raggett, G.F.1
Wilson, P.D.2
-
19
-
-
0034687898
-
Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
-
Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation. J. Comput. Phys. 157 (2000) 473-499
-
(2000)
J. Comput. Phys.
, vol.157
, pp. 473-499
-
-
Reich, S.1
-
20
-
-
0027643950
-
Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation
-
Vu-Quoc L., and Li S. Invariant-conserving finite difference algorithms for the nonlinear Klein-Gordon equation. Comput. Methods Appl. Mech. Engrg. 107 (1993) 341-391
-
(1993)
Comput. Methods Appl. Mech. Engrg.
, vol.107
, pp. 341-391
-
-
Vu-Quoc, L.1
Li, S.2
-
21
-
-
20444496902
-
High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation
-
Wang Y., and Wang B. High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation. Appl. Math. Comput. 166 (2005) 608-632
-
(2005)
Appl. Math. Comput.
, vol.166
, pp. 608-632
-
-
Wang, Y.1
Wang, B.2
-
22
-
-
0003102674
-
An initial-boundary value problem of a nonlinear Klein-Gordon equation
-
Wong Y.S., Chang Q., and Gong L. An initial-boundary value problem of a nonlinear Klein-Gordon equation. Appl. Math. Comput. 84 (1997) 77-93
-
(1997)
Appl. Math. Comput.
, vol.84
, pp. 77-93
-
-
Wong, Y.S.1
Chang, Q.2
Gong, L.3
-
23
-
-
43549101930
-
The variational iteration method for studying the Klein-Gordon equation
-
Yusufoglu E. The variational iteration method for studying the Klein-Gordon equation. Appl. Math. Lett. 21 (2008) 669-674
-
(2008)
Appl. Math. Lett.
, vol.21
, pp. 669-674
-
-
Yusufoglu, E.1
|