메뉴 건너뛰기




Volumn 25, Issue 4, 2009, Pages 939-951

On the numerical solution of the Klein-Gordon equation

Author keywords

Finite difference method; Klein gordon equation; Predictor corrector; Soliton

Indexed keywords


EID: 67849133137     PISSN: 0749159X     EISSN: 10982426     Source Type: Journal    
DOI: 10.1002/num.20383     Document Type: Article
Times cited : (39)

References (32)
  • 1
    • 0002428084 scopus 로고
    • Report of the committee of waves, Report of the 7th Meeting of the British Association for the Advancement of Science
    • 1 J. Scott Russell, Report of the committee of waves, Report of the 7th Meeting of the British Association for the Advancement of Science, Liverpool, 1838, pp. 417–496.
    • (1838) , pp. 417-496
    • Scott Russell, J.1
  • 2
    • 0001964260 scopus 로고
    • Report on waves, Report of the 14th Meeting of the British Association for the Advancement of Science
    • 2 J. Scott Russell, Report on waves, Report of the 14th Meeting of the British Association for the Advancement of Science, John Murray, London, 1844, pp. 311–390.
    • (1844) , pp. 311-390
    • Scott Russell, J.1
  • 3
    • 0001524186 scopus 로고
    • On the change of form of long‐waves advancing in a rectangular canal, and on a new type of long stationary waves
    • 3 D. J. Korteweg and G. de Vries, On the change of form of long‐waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos Mag 39 (1895), 422–443.
    • (1895) Philos Mag , vol.39 , pp. 422-443
    • Korteweg, D.J.1    de Vries, G.2
  • 4
    • 33846361348 scopus 로고
    • Interaction of solitons in a collisionless plasma and the recurrence of initial states
    • 4 N. J. Zabusky and M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys Rev Lett 15 (1965), 240–243.
    • (1965) Phys Rev Lett , vol.15 , pp. 240-243
    • Zabusky, N.J.1    Kruskal, M.D.2
  • 5
    • 39849111314 scopus 로고
    • Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Notes Series 149
    • 5 M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Notes Series 149, Cambridge University Press, Cambridge, London, 1991.
    • (1991)
    • Ablowitz, M.J.1    Clarkson, P.A.2
  • 6
    • 0004282455 scopus 로고
    • Elements of soliton theory
    • 6 G. L. Lamb, Elements of soliton theory, Wiley, New York, 1980.
    • (1980)
    • Lamb, G.L.1
  • 7
    • 43249120157 scopus 로고    scopus 로고
    • A numerical method for the one‐dimensional sine‐Gordon equation
    • 7 A. G. Bratsos, A numerical method for the one‐dimensional sine‐Gordon equation, Numer Methods Partial Differential Equations 24 (2008), 833–844.
    • (2008) Numer Methods Partial Differential Equations , vol.24 , pp. 833-844
    • Bratsos, A.G.1
  • 8
    • 85057428090 scopus 로고    scopus 로고
    • Handbook of nonlinear partial differential equations
    • 8 A. D. Polyanin and V. F. Zaitsev, Handbook of nonlinear partial differential equations, Chapman & Hall CRC Press, Boca Raton, FL, 2004.
    • (2004)
    • Polyanin, A.D.1    Zaitsev, V.F.2
  • 9
    • 27744509855 scopus 로고    scopus 로고
    • Compactons, solitons and periodic solutions for some forms of nonlinear Klein‐Gordon equations
    • 9 A. M. Wazwaz, Compactons, solitons and periodic solutions for some forms of nonlinear Klein‐Gordon equations, Chaos Solitons & Fractals 28 (2006), 1005–1013.
    • (2006) Chaos Solitons & Fractals , vol.28 , pp. 1005-1013
    • Wazwaz, A.M.1
  • 10
    • 0000765110 scopus 로고
    • Numerical solution of a nonlinear Klein‐Gordon equation
    • 10 W. A. Strauss and L. Vázquez, Numerical solution of a nonlinear Klein‐Gordon equation, J Comput Phys 28 (1978), 271–278.
    • (1978) J Comput Phys , vol.28 , pp. 271-278
    • Strauss, W.A.1    Vázquez, L.2
  • 11
    • 0002079274 scopus 로고
    • Analysis of four numerical schemes for a nonlinear Klein‐Gordon equation
    • 11 S. Jiménez and L. Vázquez, Analysis of four numerical schemes for a nonlinear Klein‐Gordon equation, Appl Math Comput 35 (1990), 61–94.
    • (1990) Appl Math Comput , vol.35 , pp. 61-94
    • Jiménez, S.1    Vázquez, L.2
  • 13
    • 51249181679 scopus 로고
    • Numerical computations of Liapunov exponents for a discretized one‐dimensional nonlinear Klein‐Gordon equation
    • 13 G. Caravati, A. Giorgilli, and L. Galgani, Numerical computations of Liapunov exponents for a discretized one‐dimensional nonlinear Klein‐Gordon equation, Lett Nuovo Cimento 38 (1983), 385–389.
    • (1983) Lett Nuovo Cimento , vol.38 , pp. 385-389
    • Caravati, G.1    Giorgilli, A.2    Galgani, L.3
  • 16
    • 46249084060 scopus 로고
    • Comportamiento de ciertas cadenas de osciladores no lineales
    • 16 S. Jiménez, Comportamiento de ciertas cadenas de osciladores no lineales, Ph.D. Thesis, Univ Complutense de Madrid, Spain, 1988.
    • (1988)
    • Jiménez, S.1
  • 17
    • 0033208009 scopus 로고    scopus 로고
    • Large amplitude instability in finite difference approximations to the Klein‐Gordon equation
    • 17 M. A. M. Lynch, Large amplitude instability in finite difference approximations to the Klein‐Gordon equation, Appl Numer Math 31 (1999), 173–182.
    • (1999) Appl Numer Math , vol.31 , pp. 173-182
    • Lynch, M.A.M.1
  • 18
    • 0002999318 scopus 로고
    • Derivation of the discrete conservation laws for a family of finite difference schemes
    • 18 S. Jiménez, Derivation of the discrete conservation laws for a family of finite difference schemes, Appl Math Comput 64 (1994), 13–45.
    • (1994) Appl Math Comput , vol.64 , pp. 13-45
    • Jiménez, S.1
  • 19
    • 84965060858 scopus 로고
    • Finite difference calculus invariant structure of a class of algorithms for the Klein‐Gordon equation
    • 19 S. Li and L. Vu‐Quoc, Finite difference calculus invariant structure of a class of algorithms for the Klein‐Gordon equation, SIAM J Numer Anal 32 (1995), 1839–1875.
    • (1995) SIAM J Numer Anal , vol.32 , pp. 1839-1875
    • Li, S.1    Vu‐Quoc, L.2
  • 20
    • 0003102674 scopus 로고    scopus 로고
    • An initial‐boundary value problem of a Klein‐Gordon equation
    • 20 Y. S. Wong, Q. Chang, and L. Gong, An initial‐boundary value problem of a Klein‐Gordon equation, Appl Math Comput 84 (1997), 77–93.
    • (1997) Appl Math Comput , vol.84 , pp. 77-93
    • Wong, Y.S.1    Chang, Q.2    Gong, L.3
  • 21
    • 0004014826 scopus 로고
    • Product approximation for nonlinear Klein‐Gordon equations
    • 21 Y. Tourigny, Product approximation for nonlinear Klein‐Gordon equations, IMA J Numer Anal 9 (1990), 449–462.
    • (1990) IMA J Numer Anal , vol.9 , pp. 449-462
    • Tourigny, Y.1
  • 22
    • 0003161846 scopus 로고    scopus 로고
    • A Legendre spectral method for solving the nonlinear Klein‐Gordon equation
    • 22 B.‐Y. Guo, X. Li, and L. Vázquez, A Legendre spectral method for solving the nonlinear Klein‐Gordon equation, Comp Appl Math 15 (1996), 19–36.
    • (1996) Comp Appl Math , vol.15 , pp. 19-36
    • Guo, B.‐Y.1    Li, X.2    Vázquez, L.3
  • 23
    • 0004024851 scopus 로고
    • Non‐perturbative solution of the Klein‐Gordon‐Zakharov equation
    • 23 G. Adomian, Non‐perturbative solution of the Klein‐Gordon‐Zakharov equation, Appl Math Comput 81 (1987), 89–92.
    • (1987) Appl Math Comput , vol.81 , pp. 89-92
    • Adomian, G.1
  • 24
    • 0030584546 scopus 로고    scopus 로고
    • A decomposition method for solving the nonlinear Klein‐Gordon equation
    • 24 E. Y. Deeba and S. A. Khuri, A decomposition method for solving the nonlinear Klein‐Gordon equation, J Comput Phys 124 (1996), 442–448.
    • (1996) J Comput Phys , vol.124 , pp. 442-448
    • Deeba, E.Y.1    Khuri, S.A.2
  • 25
    • 0004483962 scopus 로고    scopus 로고
    • The tanh method. I. Exact solutions of nonlinear evolution and wave equations
    • 25 W. Malfliet and W. Hereman, The tanh method. I. Exact solutions of nonlinear evolution and wave equations, Phys Scr 54 (1996), 563–568.
    • (1996) Phys Scr , vol.54 , pp. 563-568
    • Malfliet, W.1    Hereman, W.2
  • 26
    • 0027341189 scopus 로고
    • A split‐step Padé solution for the parabolic equation method
    • 26 M. D. Collins, A split‐step Padé solution for the parabolic equation method, J Acoust Soc Am 93 (1993), 1736–1742.
    • (1993) J Acoust Soc Am , vol.93 , pp. 1736-1742
    • Collins, M.D.1
  • 27
    • 0004147730 scopus 로고
    • Computational methods for partial differential equations
    • 27 E. H. Twizell, Computational methods for partial differential equations, Ellis Horwood Limited, England, 1984.
    • (1984)
    • Twizell, E.H.1
  • 28
    • 33847407493 scopus 로고    scopus 로고
    • A modified predictor‐corrector scheme for the two‐dimensional sine‐Gordon equation
    • 28 A. G. Bratsos, A modified predictor‐corrector scheme for the two‐dimensional sine‐Gordon equation, Numer Algorithms 43 (2006), 295–308.
    • (2006) Numer Algorithms , vol.43 , pp. 295-308
    • Bratsos, A.G.1
  • 29
    • 35748982165 scopus 로고    scopus 로고
    • A third order numerical scheme for the two‐dimensional sine‐Gordon equation
    • 29 A. G. Bratsos, A third order numerical scheme for the two‐dimensional sine‐Gordon equation, Math Comput Simul 76 (2007), 271–282.
    • (2007) Math Comput Simul , vol.76 , pp. 271-282
    • Bratsos, A.G.1
  • 30
    • 34249277434 scopus 로고    scopus 로고
    • The solution of the two‐dimensional sine‐Gordon equation using the method of lines
    • 30 A. G. Bratsos, The solution of the two‐dimensional sine‐Gordon equation using the method of lines, J Comput Appl Math 206 (2006), 251–277.
    • (2006) J Comput Appl Math , vol.206 , pp. 251-277
    • Bratsos, A.G.1
  • 31
    • 35648972091 scopus 로고    scopus 로고
    • A second order numerical scheme for the solution of the one‐dimensional Boussinesq equation
    • 31 A. G. Bratsos, A second order numerical scheme for the solution of the one‐dimensional Boussinesq equation, Numer Algorithms 46 (2007), 45–58.
    • (2007) Numer Algorithms , vol.46 , pp. 45-58
    • Bratsos, A.G.1
  • 32
    • 65549112297 scopus 로고    scopus 로고
    • A predictor‐corrector scheme for the improved Boussinesq equation
    • 32 A. G. Bratsos, A predictor‐corrector scheme for the improved Boussinesq equation, Chaos solitons & Fractals, http://dx.doi.org/10.1016/j.chaos.2007.09.083.
    • Bratsos, A.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.