메뉴 건너뛰기




Volumn 166, Issue 3, 2005, Pages 608-632

High-order multi-symplectic schemes for the nonlinear Klein-Gordon equation

Author keywords

[No Author keywords available]

Indexed keywords

INTEGRATION; MATHEMATICAL OPERATORS; NUMERICAL ANALYSIS; ORDINARY DIFFERENTIAL EQUATIONS; PARTIAL DIFFERENTIAL EQUATIONS;

EID: 20444496902     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2004.07.007     Document Type: Article
Times cited : (27)

References (16)
  • 1
    • 0042137401 scopus 로고    scopus 로고
    • Multi-symplectic structures and wave propagation
    • T.J. Bridges multi-symplectic structures and wave propagation Math. Proc. Camb. Phil. Soc. 121 1997 147 190
    • (1997) Math. Proc. Camb. Phil. Soc. , vol.121 , pp. 147-190
    • Bridges, T.J.1
  • 2
    • 0032476963 scopus 로고    scopus 로고
    • Multi-symplectic geometry, variational integrators, and integrators, and nonlinear PDEs
    • J.E. Marsden, G.P. Patrick, and S. Shkoller multi-symplectic geometry, variational integrators, and integrators, and nonlinear PDEs Comm. Math. Phys. 199 1998 351 395
    • (1998) Comm. Math. Phys. , vol.199 , pp. 351-395
    • Marsden, J.E.1    Patrick, G.P.2    Shkoller, S.3
  • 4
    • 33746421439 scopus 로고    scopus 로고
    • Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry
    • T.J. Bridges, and G. Derks Unstable eigenvalues and the linearization about solitary waves and fronts with symmetry Proc. Roy. Soc. Lond. A 455 1999 2427 2469
    • (1999) Proc. Roy. Soc. Lond. a , vol.455 , pp. 2427-2469
    • Bridges, T.J.1    Derks, G.2
  • 5
    • 34249766017 scopus 로고
    • Symplectic integration of Hamiltonian wave equations
    • R.I. McLachlan Symplectic integration of Hamiltonian wave equations Numer. Math. 66 1994 465 492
    • (1994) Numer. Math. , vol.66 , pp. 465-492
    • McLachlan, R.I.1
  • 6
    • 0003034563 scopus 로고
    • The symplectic methods for computation of Hamiltonian systems
    • Proc. Conf. Numerical Methods for PDEs, Y.L. Zhu B.-Y. Guo Springer Berlin
    • K. Feng, and M.Z. Qin The symplectic methods for computation of Hamiltonian systems Y.L. Zhu B.-Y. Guo Proc. Conf. Numerical Methods for PDEs Lecture Notes in Math. 1297 1987 Springer Berlin 1 37
    • (1987) Lecture Notes in Math. , vol.1297 , pp. 1-37
    • Feng, K.1    Qin, M.Z.2
  • 8
    • 0037832748 scopus 로고    scopus 로고
    • Multi-symplectic Integrators: Numerical schemes for Hamiltonian PDEs that conserve symplecticity
    • T.J. Bridge, and S. Reich Multi-symplectic Integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity Phys. Lett. A 284 2001 184 193
    • (2001) Phys. Lett. a , vol.284 , pp. 184-193
    • Bridge, T.J.1    Reich, S.2
  • 9
    • 0034687898 scopus 로고    scopus 로고
    • Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation
    • S. Reich Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equation J. Comput. Phys. 157 2000 473 499
    • (2000) J. Comput. Phys. , vol.157 , pp. 473-499
    • Reich, S.1
  • 10
    • 0025249534 scopus 로고
    • Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equation
    • M.Z. Qin, and M.Q. Zhang Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equation Comput. Math. Appl. 19 10 1990 51 62
    • (1990) Comput. Math. Appl. , vol.19 , Issue.10 , pp. 51-62
    • Qin, M.Z.1    Zhang, M.Q.2
  • 11
    • 0035609802 scopus 로고    scopus 로고
    • Multi-symplectic geometry and multi-symplectic scheme for the nonlinear Klein-Gordon equation
    • Y.S. Wang, and M.Z. Qin multi-symplectic geometry and multi-symplectic scheme for the nonlinear Klein-Gordon equation J. Phys. Soc. Jpn. 70 3 2001 653 661
    • (2001) J. Phys. Soc. Jpn. , vol.70 , Issue.3 , pp. 653-661
    • Wang, Y.S.1    Qin, M.Z.2
  • 12
    • 0001005075 scopus 로고
    • Construction of higher order symplectic integrators
    • H. Yoshida Construction of higher order symplectic integrators Phys. Lett. A 150 1990 262 269
    • (1990) Phys. Lett. a , vol.150 , pp. 262-269
    • Yoshida, H.1
  • 14
    • 0002079274 scopus 로고
    • Analysis of four numerical schemes for a nonlinear Klein-Gordon equation
    • S. Jimenez, and L. Vazquez Analysis of four numerical schemes for a nonlinear Klein-Gordon equation Appl. Math. Comput. 35 1990 61 94
    • (1990) Appl. Math. Comput. , vol.35 , pp. 61-94
    • Jimenez, S.1    Vazquez, L.2
  • 15
    • 1142291885 scopus 로고    scopus 로고
    • The Shanghai Educational Press of Science and Techknowledge
    • Y.S. Li Solitons and Integrable Systems 1999 The Shanghai Educational Press of Science and Techknowledge p. 65
    • (1999) Solitons and Integrable Systems
    • Li, Y.S.1
  • 16
    • 0001363641 scopus 로고
    • Implicit spectral methods for wave propagation problems
    • S.B. Wineberg, J.F. McGrath, and E.F. Gabl Implicit spectral methods for wave propagation problems J. Comp. Phys. 97 1991 311 336
    • (1991) J. Comp. Phys. , vol.97 , pp. 311-336
    • Wineberg, S.B.1    McGrath, J.F.2    Gabl, E.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.