메뉴 건너뛰기




Volumn 73, Issue 1-3, 2009, Pages 295-303

Boosting feature selection using information metric for classification

Author keywords

Boosting; Classification; Feature selection; Filter model; Information metric

Indexed keywords

BOOSTING; CLASSIFICATION; FEATURE SELECTION; FILTER MODEL; INFORMATION METRIC;

EID: 70350733470     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.08.012     Document Type: Article
Times cited : (27)

References (39)
  • 2
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 3
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17 4 (2005) 491-502
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 5
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y., Inza I., and Larrañaga L. A review of feature selection techniques in bioinformatics. Bioinformatics 23 19 (2007) 2507-2517
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, L.3
  • 6
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 97 (1997) 245-271
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 8
    • 0036532821 scopus 로고    scopus 로고
    • A hybrid filter/wrapper approach of feature selection using information theory
    • Sebban M., and Nock R. A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35 4 (2002) 835-846
    • (2002) Pattern Recognition , vol.35 , Issue.4 , pp. 835-846
    • Sebban, M.1    Nock, R.2
  • 9
    • 33751002948 scopus 로고    scopus 로고
    • A novel feature selection approach: combining feature wrappers and filters
    • Uncu Ö., and Türkse ̧n I.B. A novel feature selection approach: combining feature wrappers and filters. Information Sciences 177 (2007) 449-466
    • (2007) Information Sciences , vol.177 , pp. 449-466
    • Uncu, Ö.1    Türkse ̧n, I.B.2
  • 14
    • 2942731012 scopus 로고    scopus 로고
    • An extensive empirical study of feature selection metrics for text classification
    • Forman G. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 3 (2003) 1289-1305
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1289-1305
    • Forman, G.1
  • 15
    • 0010739663 scopus 로고    scopus 로고
    • Filters, wrappers and a boosting-based hybrid for feature selection
    • San Francisco, CA, USA
    • S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: Proceedings of the 18th International Conference on Machine Learning, San Francisco, CA, USA, 2001, pp. 74-81.
    • (2001) Proceedings of the 18th International Conference on Machine Learning , pp. 74-81
    • Das, S.1
  • 16
    • 70350739430 scopus 로고    scopus 로고
    • Feature selection for ensemble learning and its application
    • Zhang Y.-Q., and Rajapakse J.C. (Eds), Wiley, New York
    • Li G.-Z., and Yang J.Y. Feature selection for ensemble learning and its application. In: Zhang Y.-Q., and Rajapakse J.C. (Eds). Machine Learning in Bioinformatics (2008), Wiley, New York
    • (2008) Machine Learning in Bioinformatics
    • Li, G.-Z.1    Yang, J.Y.2
  • 17
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • Liu H., Sun J., Liu L., and Zhang H. Feature selection with dynamic mutual information. Pattern Recognition 42 (2009) 1330-1339
    • (2009) Pattern Recognition , vol.42 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 18
    • 43649100193 scopus 로고    scopus 로고
    • Notes on the evolution of feature selection methodology
    • Somol P., Novovičová J., and Pudil P. Notes on the evolution of feature selection methodology. Kybernetika 43 5 (2007) 713-730
    • (2007) Kybernetika , vol.43 , Issue.5 , pp. 713-730
    • Somol, P.1    Novovičová, J.2    Pudil, P.3
  • 20
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 (2005) 1226-1238
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 26
    • 33746645146 scopus 로고    scopus 로고
    • Boost feature subset selection: A new gene selection algorithm for microarray data set
    • UK
    • X. Xu, A. Zhang, Boost feature subset selection: a new gene selection algorithm for microarray data set, in: International Conference on Computational Science, vol. 2, UK, 2006, pp. 670-677.
    • (2006) International Conference on Computational Science , vol.2 , pp. 670-677
    • Xu, X.1    Zhang, A.2
  • 27
    • 43249103345 scopus 로고    scopus 로고
    • Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation
    • Hung W.-L., Yang M.-S., and Chen D.-H. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters 29 9 (2008) 1317-1325
    • (2008) Pattern Recognition Letters , vol.29 , Issue.9 , pp. 1317-1325
    • Hung, W.-L.1    Yang, M.-S.2    Chen, D.-H.3
  • 28
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 (2003) 1291-1302
    • (2003) Pattern Recognition , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 29
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification
    • Tsymbal A., Puuronen S., and Patterson D.W. Ensemble feature selection with the simple Bayesian classification. Information Fusion 4 (2003) 87-100
    • (2003) Information Fusion , vol.4 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.W.3
  • 30
    • 38749139222 scopus 로고    scopus 로고
    • Consensus unsupervised feature ranking from multiple views
    • Hong Y., Kwong S., Chang Y., and Ren Q. Consensus unsupervised feature ranking from multiple views. Pattern Recognition Letters 29 (2008) 595-602
    • (2008) Pattern Recognition Letters , vol.29 , pp. 595-602
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 34
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Morgan Kaufmann Publishers, San Francisco, CA
    • Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: The 13th International Conference on Machine Learning, Morgan Kaufmann Publishers, San Francisco, CA, 1996, pp. 148-156.
    • (1996) The 13th International Conference on Machine Learning , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 35
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: an overview
    • Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds), Springer, Berlin
    • Schapire R.E. The boosting approach to machine learning: an overview. In: Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds). Nonlinear Estimation and Classification (2003), Springer, Berlin
    • (2003) Nonlinear Estimation and Classification
    • Schapire, R.E.1
  • 36
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • Dash M., and Liu H. Consistency-based search in feature selection. Artificial Intelligence 151 (2003) 155-176
    • (2003) Artificial Intelligence , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 37
    • 55349138530 scopus 로고    scopus 로고
    • Available, Department of Information and Computer Science, University of California, Irvine
    • A. Asuncion, D.J. Newman, UCI Repository of Machine Learning Databases, Available 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, Department of Information and Computer Science, University of California, Irvine, 2007.
    • (2007) UCI Repository of Machine Learning Databases
    • Asuncion, A.1    Newman, D.J.2
  • 38
    • 12144251725 scopus 로고    scopus 로고
    • Effective feature selection scheme using mutual information
    • Huang D., and Chow T.W.S. Effective feature selection scheme using mutual information. Neurocomputing 63 (2005) 325-343
    • (2005) Neurocomputing , vol.63 , pp. 325-343
    • Huang, D.1    Chow, T.W.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.