-
2
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., and John G.H. Wrappers for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
3
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 17 4 (2005) 491-502
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
5
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y., Inza I., and Larrañaga L. A review of feature selection techniques in bioinformatics. Bioinformatics 23 19 (2007) 2507-2517
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, L.3
-
6
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 97 (1997) 245-271
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
7
-
-
0004060921
-
-
Department of Computer Science, University of Waikato, Hamilton, New Zealand
-
M.A. Hall, Correlation-based Feature Subset Selection for Machine Learning, Department of Computer Science, University of Waikato, Hamilton, New Zealand, 1999.
-
(1999)
Correlation-based Feature Subset Selection for Machine Learning
-
-
Hall, M.A.1
-
8
-
-
0036532821
-
A hybrid filter/wrapper approach of feature selection using information theory
-
Sebban M., and Nock R. A hybrid filter/wrapper approach of feature selection using information theory. Pattern Recognition 35 4 (2002) 835-846
-
(2002)
Pattern Recognition
, vol.35
, Issue.4
, pp. 835-846
-
-
Sebban, M.1
Nock, R.2
-
9
-
-
33751002948
-
A novel feature selection approach: combining feature wrappers and filters
-
Uncu Ö., and Türkse ̧n I.B. A novel feature selection approach: combining feature wrappers and filters. Information Sciences 177 (2007) 449-466
-
(2007)
Information Sciences
, vol.177
, pp. 449-466
-
-
Uncu, Ö.1
Türkse ̧n, I.B.2
-
11
-
-
85146422424
-
A practical approach to feature selection
-
Morgan Kaufmann, Los Altos, CA
-
K. Kira, L. Rendell. A practical approach to feature selection, in: Proceedings of the Ninth International Conference on Machine Learning, Morgan Kaufmann, Los Altos, CA, 1992, pp. 249-256.
-
(1992)
Proceedings of the Ninth International Conference on Machine Learning
, pp. 249-256
-
-
Kira, K.1
Rendell, L.2
-
13
-
-
0003141935
-
-
Nashville, US, Morgan Kaufmann Publishers, Los Altos, CA
-
Y. Yang, J.O. Pedersen, A comparative study on feature selection in text categorization in: Proceedings of the 14th International Conference on Machine Learning, Nashville, US, Morgan Kaufmann Publishers, Los Altos, CA, 1997, pp. 412-420.
-
(1997)
A comparative study on feature selection in text categorization in: Proceedings of the 14th International Conference on Machine Learning
, pp. 412-420
-
-
Yang, Y.1
Pedersen, J.O.2
-
14
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
Forman G. An extensive empirical study of feature selection metrics for text classification. Journal of Machine Learning Research 3 (2003) 1289-1305
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1289-1305
-
-
Forman, G.1
-
15
-
-
0010739663
-
Filters, wrappers and a boosting-based hybrid for feature selection
-
San Francisco, CA, USA
-
S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: Proceedings of the 18th International Conference on Machine Learning, San Francisco, CA, USA, 2001, pp. 74-81.
-
(2001)
Proceedings of the 18th International Conference on Machine Learning
, pp. 74-81
-
-
Das, S.1
-
16
-
-
70350739430
-
Feature selection for ensemble learning and its application
-
Zhang Y.-Q., and Rajapakse J.C. (Eds), Wiley, New York
-
Li G.-Z., and Yang J.Y. Feature selection for ensemble learning and its application. In: Zhang Y.-Q., and Rajapakse J.C. (Eds). Machine Learning in Bioinformatics (2008), Wiley, New York
-
(2008)
Machine Learning in Bioinformatics
-
-
Li, G.-Z.1
Yang, J.Y.2
-
17
-
-
62349118015
-
Feature selection with dynamic mutual information
-
Liu H., Sun J., Liu L., and Zhang H. Feature selection with dynamic mutual information. Pattern Recognition 42 (2009) 1330-1339
-
(2009)
Pattern Recognition
, vol.42
, pp. 1330-1339
-
-
Liu, H.1
Sun, J.2
Liu, L.3
Zhang, H.4
-
18
-
-
43649100193
-
Notes on the evolution of feature selection methodology
-
Somol P., Novovičová J., and Pudil P. Notes on the evolution of feature selection methodology. Kybernetika 43 5 (2007) 713-730
-
(2007)
Kybernetika
, vol.43
, Issue.5
, pp. 713-730
-
-
Somol, P.1
Novovičová, J.2
Pudil, P.3
-
20
-
-
24344458137
-
Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
-
Peng H., Long F., and Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27 8 (2005) 1226-1238
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
21
-
-
38449109775
-
Conditional mutual information based feature selection for classification task
-
Valparaiso, Chile
-
J. Novovičová, P. Somol, M. Haindl, P. Pudil, Conditional mutual information based feature selection for classification task, in: the 12th Iberoamerican Congress on Pattern Recognition, Valparaiso, Chile, 2007, pp. 417-426.
-
(2007)
the 12th Iberoamerican Congress on Pattern Recognition
, pp. 417-426
-
-
Novovičová, J.1
Somol, P.2
Haindl, M.3
Pudil, P.4
-
22
-
-
58149465401
-
-
doi: 10.1016/j.neucom.2008.04.005
-
R. Cai, Z. Hao, X. Yang, W. Wen, An efficient gene selection algorithm based on mutual information, Neurocomputing (2008), doi: 10.1016/j.neucom.2008.04.005.
-
(2008)
An efficient gene selection algorithm based on mutual information, Neurocomputing
-
-
Cai, R.1
Hao, Z.2
Yang, X.3
Wen, W.4
-
25
-
-
27244449186
-
Boosting feature selection
-
Bath, UK, Springer, Berlin
-
D.B. Redpath, K. Lebart, Boosting feature selection, in: The Third International Conference on Advances in Pattern Recognition, Bath, UK, Springer, Berlin, 2005, pp. 305-314.
-
(2005)
The Third International Conference on Advances in Pattern Recognition
, pp. 305-314
-
-
Redpath, D.B.1
Lebart, K.2
-
26
-
-
33746645146
-
Boost feature subset selection: A new gene selection algorithm for microarray data set
-
UK
-
X. Xu, A. Zhang, Boost feature subset selection: a new gene selection algorithm for microarray data set, in: International Conference on Computational Science, vol. 2, UK, 2006, pp. 670-677.
-
(2006)
International Conference on Computational Science
, vol.2
, pp. 670-677
-
-
Xu, X.1
Zhang, A.2
-
27
-
-
43249103345
-
Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation
-
Hung W.-L., Yang M.-S., and Chen D.-H. Bootstrapping approach to feature-weight selection in fuzzy c-means algorithms with an application in color image segmentation. Pattern Recognition Letters 29 9 (2008) 1317-1325
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.9
, pp. 1317-1325
-
-
Hung, W.-L.1
Yang, M.-S.2
Chen, D.-H.3
-
28
-
-
0242515926
-
Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
-
Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 (2003) 1291-1302
-
(2003)
Pattern Recognition
, vol.36
, pp. 1291-1302
-
-
Bryll, R.1
Gutierrez-Osuna, R.2
Quek, F.3
-
29
-
-
0038137315
-
Ensemble feature selection with the simple Bayesian classification
-
Tsymbal A., Puuronen S., and Patterson D.W. Ensemble feature selection with the simple Bayesian classification. Information Fusion 4 (2003) 87-100
-
(2003)
Information Fusion
, vol.4
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.W.3
-
32
-
-
26444507921
-
Combining feature subsets in feature selection
-
USA
-
M. Skurichina, R.P.W. Duin, Combining feature subsets in feature selection, in: The Sixth International Workshop on Multiple Classifier System, Springer, Seaside, USA, 2005, pp. 165-175.
-
(2005)
The Sixth International Workshop on Multiple Classifier System, Springer, Seaside
, pp. 165-175
-
-
Skurichina, M.1
Duin, R.P.W.2
-
34
-
-
0002978642
-
Experiments with a new boosting algorithm
-
Morgan Kaufmann Publishers, San Francisco, CA
-
Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: The 13th International Conference on Machine Learning, Morgan Kaufmann Publishers, San Francisco, CA, 1996, pp. 148-156.
-
(1996)
The 13th International Conference on Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
35
-
-
0037806811
-
The boosting approach to machine learning: an overview
-
Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds), Springer, Berlin
-
Schapire R.E. The boosting approach to machine learning: an overview. In: Denison D.D., Hansen M.H., Holmes C., Mallick B., and Yu B. (Eds). Nonlinear Estimation and Classification (2003), Springer, Berlin
-
(2003)
Nonlinear Estimation and Classification
-
-
Schapire, R.E.1
-
36
-
-
0242302657
-
Consistency-based search in feature selection
-
Dash M., and Liu H. Consistency-based search in feature selection. Artificial Intelligence 151 (2003) 155-176
-
(2003)
Artificial Intelligence
, vol.151
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
37
-
-
55349138530
-
-
Available, Department of Information and Computer Science, University of California, Irvine
-
A. Asuncion, D.J. Newman, UCI Repository of Machine Learning Databases, Available 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉, Department of Information and Computer Science, University of California, Irvine, 2007.
-
(2007)
UCI Repository of Machine Learning Databases
-
-
Asuncion, A.1
Newman, D.J.2
-
38
-
-
12144251725
-
Effective feature selection scheme using mutual information
-
Huang D., and Chow T.W.S. Effective feature selection scheme using mutual information. Neurocomputing 63 (2005) 325-343
-
(2005)
Neurocomputing
, vol.63
, pp. 325-343
-
-
Huang, D.1
Chow, T.W.S.2
|