메뉴 건너뛰기




Volumn 29, Issue 5, 2008, Pages 595-602

Consensus unsupervised feature ranking from multiple views

Author keywords

Clustering; Feature ranking ensembles; Unsupervised feature selection

Indexed keywords

CLUSTER ANALYSIS; COMPUTATION THEORY; PROBLEM SOLVING; UNSUPERVISED LEARNING;

EID: 38749139222     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2007.11.012     Document Type: Article
Times cited : (65)

References (36)
  • 2
    • 38749129389 scopus 로고    scopus 로고
    • Blake, C., Merz, C., UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html.
    • Blake, C., Merz, C., UCI repository of machine learning databases. http://www.ics.uci.edu/mlearn/MLRepository.html.
  • 3
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A., and Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. (1997) 245-271
    • (1997) Artif. Intell. , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 4
    • 78149289039 scopus 로고    scopus 로고
    • Dash, M., Choi, K., Scheuermann, P., Liu, H., 2002. Feature selection for clustering-A filter solution. In: Proceedings of the IEEE International Conf. on Data Mining, pp. 115-122.
    • Dash, M., Choi, K., Scheuermann, P., Liu, H., 2002. Feature selection for clustering-A filter solution. In: Proceedings of the IEEE International Conf. on Data Mining, pp. 115-122.
  • 5
    • 0031191557 scopus 로고    scopus 로고
    • Feature subset selection within a simulated annealing data mining algorithm
    • Debuse J.C.W., and Rayward-Smith V.J. Feature subset selection within a simulated annealing data mining algorithm. J. Intell. Inform. Syst. 9 1 (1997) 57-81
    • (1997) J. Intell. Inform. Syst. , vol.9 , Issue.1 , pp. 57-81
    • Debuse, J.C.W.1    Rayward-Smith, V.J.2
  • 6
    • 26444454606 scopus 로고    scopus 로고
    • Feature selection for unsupervised learning
    • Dy J.G., and Brodley C.E. Feature selection for unsupervised learning. J. Mach. Learn. Res. 5 (2004) 845-889
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 845-889
    • Dy, J.G.1    Brodley, C.E.2
  • 7
    • 1942517297 scopus 로고    scopus 로고
    • Fern, X.Z., Brodley, C.E., 2003. Clustering ensembles for high dimensional data clustering. In: Proc. Internat. Conf. on Machine Learning, pp. 186-193.
    • Fern, X.Z., Brodley, C.E., 2003. Clustering ensembles for high dimensional data clustering. In: Proc. Internat. Conf. on Machine Learning, pp. 186-193.
  • 9
    • 21244468777 scopus 로고    scopus 로고
    • Combining multiple clusterings using evidence accumulation
    • Fred A., and Jain A.K. Combining multiple clusterings using evidence accumulation. IEEE Trans. Pattern Anal. Machine Intell. 27 (2005) 835-850
    • (2005) IEEE Trans. Pattern Anal. Machine Intell. , vol.27 , pp. 835-850
    • Fred, A.1    Jain, A.K.2
  • 11
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., and Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff2
  • 12
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston S., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learn. 46 (2004) 389-422
    • (2004) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, S.2    Barnhill, S.3    Vapnik, V.4
  • 13
    • 38749112277 scopus 로고    scopus 로고
    • Hall, M.A., 2000. Correlation based feature selection for discrete and numeric class machine learning. In: Proc. Internat. Conf. on Machine Learning, pp. 359-366.
    • Hall, M.A., 2000. Correlation based feature selection for discrete and numeric class machine learning. In: Proc. Internat. Conf. on Machine Learning, pp. 359-366.
  • 14
    • 38749086184 scopus 로고    scopus 로고
    • Hall, M.A., Smith, L.A., 1997. Feature subset selection: a correlation based filter approach. In: Proc. Internat. Conf. on Neural Information Processing and Intelligent Information Systems, pp. 855-858.
    • Hall, M.A., Smith, L.A., 1997. Feature subset selection: a correlation based filter approach. In: Proc. Internat. Conf. on Neural Information Processing and Intelligent Information Systems, pp. 855-858.
  • 15
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Machine Intell. 20 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Machine Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 16
    • 35048840898 scopus 로고    scopus 로고
    • Jong, K., Mary, J., Cornuéjols, A., Marchiori, E., Sebag, M., 2004. Ensemble feature ranking. In: Proc. Euro. Conf. on Principles and Practice of Knowledge Discovery in Databases, pp. 267-278.
    • Jong, K., Mary, J., Cornuéjols, A., Marchiori, E., Sebag, M., 2004. Ensemble feature ranking. In: Proc. Euro. Conf. on Principles and Practice of Knowledge Discovery in Databases, pp. 267-278.
  • 17
    • 0034593107 scopus 로고    scopus 로고
    • Kim, Y., Street, W., Menczer, F., 2000. Feature selection for unsupervised learning via evaluationary search. In: Proc. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 365-369.
    • Kim, Y., Street, W., Menczer, F., 2000. Feature selection for unsupervised learning via evaluationary search. In: Proc. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 365-369.
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and John G.H. Wrappers for feature subset selection. Artif. Intell. 97 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 19
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifier
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifier. Pattern Recogn. 33 (2000) 25-41
    • (2000) Pattern Recogn. , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 20
    • 38749134947 scopus 로고    scopus 로고
    • Law, M.H., Figueiredo, M.A.T., Jain, A.K., 2002. Feature selection in mixture-based clustering. In: Advances in Neural Information Processing Systems, pp. 609-616.
    • Law, M.H., Figueiredo, M.A.T., Jain, A.K., 2002. Feature selection in mixture-based clustering. In: Advances in Neural Information Processing Systems, pp. 609-616.
  • 22
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., and Yu H. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17 4 (2005) 491-502
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, H.2
  • 24
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression discovery data
    • Monti A., Tamaya P., Mesirov T., and Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression discovery data. J. Machine Learn. 52 (2003) 91-118
    • (2003) J. Machine Learn. , vol.52 , pp. 91-118
    • Monti, A.1    Tamaya, P.2    Mesirov, T.3    Golub, T.4
  • 25
    • 84945942894 scopus 로고    scopus 로고
    • Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y., 2003. Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition. In: Proc. Seventh Internat. Conf. on Document Analysis and Recognition.
    • Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.Y., 2003. Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition. In: Proc. Seventh Internat. Conf. on Document Analysis and Recognition.
  • 27
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66 (1971) 846-850
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 28
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • Schena M., Shalon D., Davis R.W., and Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science (1995) 467-470
    • (1995) Science , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 30
    • 0036080160 scopus 로고    scopus 로고
    • Bagging, boosting and the random subspace method for linear classifiers
    • Skurichina M., and Duin R.P.W. Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal. Appl. 5 (2002) 121-135
    • (2002) Pattern Anal. Appl. , vol.5 , pp. 121-135
    • Skurichina, M.1    Duin, R.P.W.2
  • 32
    • 0041965980 scopus 로고    scopus 로고
    • Clustering ensembles a knowledge reuse framework for combining multiple partitions
    • Strehl A., and Ghosh J. Clustering ensembles a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3 (2002) 583-617
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 33
    • 33846088965 scopus 로고    scopus 로고
    • Feature selection algorithm for mixed data with both nominal and continuous features
    • Tang W., and Mao K. Feature selection algorithm for mixed data with both nominal and continuous features. Pattern Recogn. Lett. 28 (2007) 563-571
    • (2007) Pattern Recogn. Lett. , vol.28 , pp. 563-571
    • Tang, W.1    Mao, K.2
  • 34
    • 0000959484 scopus 로고    scopus 로고
    • CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts
    • Xing E.P., and Karp R.M. CLIFF: clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts. Bioinformatics 17 (2001) 306-315
    • (2001) Bioinformatics , vol.17 , pp. 306-315
    • Xing, E.P.1    Karp, R.M.2
  • 35
    • 1942451938 scopus 로고    scopus 로고
    • Yu, L., Liu, H., 2003. Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proc. Internat. Conf. on Machine Learning, pp. 856-863.
    • Yu, L., Liu, H., 2003. Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proc. Internat. Conf. on Machine Learning, pp. 856-863.
  • 36
    • 12244293653 scopus 로고    scopus 로고
    • Yu, L., Liu, H., 2004. Redundancy based feature selection for microarray data. In: Proc. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 737-742.
    • Yu, L., Liu, H., 2004. Redundancy based feature selection for microarray data. In: Proc. ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 737-742.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.