-
1
-
-
0031361611
-
Machine-learning research: four current directions
-
Dietterich, T. Machine-learning research: four current directions. The AI Magazine, 18(4): 97-136, 1998.
-
(1998)
The AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.1
-
2
-
-
0030211964
-
Bagging predictors
-
Machine Learning
-
Breiman, L. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
-
(1996)
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: bagging, boosting, and variants
-
Bauer, E. and Kohavi, R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36(2): 105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, Issue.2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
25444484657
-
Managing diversity in regression ensembles
-
Brown, G.,Wyatt, J. L., and Tino, P. Managing diversity in regression ensembles. Journal of Machine Learning Research, 3: 1621-1650, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.3
, pp. 1621-1650
-
-
Brown, G.1
Wyatt, J.L.2
Tino, P.3
-
6
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
(Oct)
-
Yu, L. and Liu, H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5(Oct): 1205-24, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
7
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu, H. and Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(3): 1-12, 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.3
, pp. 1-12
-
-
Liu, H.1
Yu, L.2
-
8
-
-
34547481968
-
Embedded methods
-
In: I. Guyon, S. Gunn, and M. Nikravesh, Eds, Springer, Physica-Verlag
-
Lal, T. N., Chapelle, O.,Weston, J., and Elisseeff, A. Embedded methods. In: I. Guyon, S. Gunn, and M. Nikravesh, Eds, Feature Extraction, Foundations and Applications, Springer, Physica-Verlag, 2006.
-
(2006)
Feature Extraction, Foundations and Applications
-
-
Lal, T.N.1
Chapelle, O.2
Weston, J.3
Elisseeff, A.4
-
9
-
-
0032139235
-
The random subspace method for construction decision forests
-
Ho, T. The random subspace method for construction decision forests. IEEE Transaction Pattern Analysis and Machine Intelligence, 20(8): 832-844, 1998.
-
(1998)
IEEE Transaction Pattern Analysis and Machine Intelligence
, vol.20
, Issue.8
, pp. 832-844
-
-
Ho, T.1
-
10
-
-
23844545305
-
Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
-
Simon, G. and Horst, B. Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Letters, 25(1): 1323-1336, 2004.
-
(2004)
Pattern Recognition Letters
, vol.25
, Issue.1
, pp. 1323-1336
-
-
Simon, G.1
Horst, B.2
-
11
-
-
0032596573
-
Feature selection for ensembles
-
Proceedings of the 16th National Conference on Artificial Intelligence (AAAI)
-
Optiz, D., Feature selection for ensembles. Proceedings of the 16th National Conference on Artificial Intelligence (AAAI), pp. 379-384, 1999.
-
-
-
Optiz, D.1
-
12
-
-
18044365477
-
Feature selection using multiobjective genetic algorithms for handwritten digit recognition
-
The 16th International Conference on Pattern Recognition
-
Oliveira, L., Sabourin, R., Bortolozzi, F., and Suen, C. Feature selection using multiobjective genetic algorithms for handwritten digit recognition. The 16th International Conference on Pattern Recognition, pp. 568-571, 2002.
-
(2002)
, pp. 568-571
-
-
Oliveira, L.1
Sabourin, R.2
Bortolozzi, F.3
Suen, C.4
-
13
-
-
0242515926
-
Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
-
Brylla, R. Gutierrez-Osunab, R., and Queka, F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6): 1291-1302, 2003.
-
(2003)
Pattern Recognition
, vol.36
, Issue.6
, pp. 1291-1302
-
-
Brylla, R.1
Gutierrez-Osunab, R.2
Queka, F.3
-
14
-
-
0042622207
-
Search strategies for ensemble feature selection in medical diagnostics
-
Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems (CBMS)
-
Tsymbal, A. and Cunningham, P. Search strategies for ensemble feature selection in medical diagnostics. Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems (CBMS), pp. 124-129, 2003.
-
(2003)
, pp. 124-129
-
-
Tsymbal, A.1
Cunningham, P.2
-
15
-
-
33750378040
-
Sequential genetic search for ensemble feature selection
-
Proceedings of the International Joint Conference on Artificial Intelligence 2005 (IJCAI2005), Edinburgh, Scotland
-
Tsymbal, A., Pechenizkiy, M., and Cunningham, P. Sequential genetic search for ensemble feature selection. Proceedings of the International Joint Conference on Artificial Intelligence 2005 (IJCAI2005), Edinburgh, Scotland, pp. 877-882, 2005.
-
(2005)
, pp. 877-882
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
16
-
-
69649084187
-
Improving nearest neighbor classifier using tabu search and ensemble distance metrics
-
Sixth International Conference on Data Mining, (ICDM 06), IEEE Press
-
Tahir, M. A. and Smith, J. Improving nearest neighbor classifier using tabu search and ensemble distance metrics. Sixth International Conference on Data Mining, (ICDM 06), IEEE Press, pp. 1086-1090, 2006.
-
(2006)
, pp. 1086-1090
-
-
Tahir, M.A.1
Smith, J.2
-
17
-
-
33745795958
-
Classification of brain glioma by using SVM bagging with feature selection
-
Proceedings of Workshop on Data Mining for Biomedical Application 2006 (BioDM2006), Springer
-
Li, G.-Z., Liu, T.-Y., and Cheng, V. S. Classification of brain glioma by using SVM bagging with feature selection. Proceedings of Workshop on Data Mining for Biomedical Application 2006 (BioDM2006). Vol. 3916, Springer, pp. 124-130, 2006.
-
(2006)
, vol.3916
, pp. 124-130
-
-
Li, G.-Z.1
Liu, T.-Y.2
Cheng, V.S.3
-
18
-
-
33745894939
-
Estimation of the future earthquake situation by using neural networks ensemble
-
Proceedings of the International Symposium on Neural Networks, Lecture Notes in Computer Science, Springer
-
Liu, T.-Y., Li, G.-Z., Liu, Y., Wu, G., and Wang., W. Estimation of the future earthquake situation by using neural networks ensemble. Proceedings of the International Symposium on Neural Networks, Lecture Notes in Computer Science, Vol. 3973, Springer, pp. 1231-1236, 2006.
-
(2006)
, vol.3973
, pp. 1231-1236
-
-
Liu, T.-Y.1
Li, G.-Z.2
Liu, Y.3
Wu, G.4
Wang, W.5
-
19
-
-
33749573711
-
Feature selection for bagging of support vector machines
-
Proceedings of 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2006), Springer
-
Li, G.-Z. and Liu, T.-Y. Feature selection for bagging of support vector machines. Proceedings of 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2006) Vol. 4099, Springer, pp. 271-277, 2006.
-
(2006)
, vol.4099
, pp. 271-277
-
-
Li, G.-Z.1
Liu, T.-Y.2
-
20
-
-
0036567392
-
Ensembling neural networks: many could be better than all
-
Zhou, Z.-H., Wu, J.-X., and Tang, W. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1-2): 239-263, 2002.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.-X.2
Tang, W.3
-
21
-
-
14344255621
-
Ensemble selection from libraries of models
-
Proceedings of the 21st International Conference on Machine Learning (ICML 2004), ACM Press
-
Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. Ensemble selection from libraries of models. Proceedings of the 21st International Conference on Machine Learning (ICML 2004), ACM Press, pp. 137-144, 2004.
-
(2004)
, pp. 137-144
-
-
Caruana, R.1
Niculescu-Mizil, A.2
Crew, G.3
Ksikes, A.4
-
22
-
-
48749096852
-
Getting the most out of ensemble selection
-
Sixth International Conference on Data Mining (ICDM'06), IEEE Press
-
Caruana, R., Munson, A., and Niculescu-Mizil, A. Getting the most out of ensemble selection. Sixth International Conference on Data Mining (ICDM'06), IEEE Press, pp. 828-833, 2006.
-
(2006)
, pp. 828-833
-
-
Caruana, R.1
Munson, A.2
Niculescu-Mizil, A.3
-
23
-
-
84889768489
-
Study on feature selection issues in ensemble learning
-
Ph.D. Thesis, School of Computer Engineering and Science, Shanghai University, China
-
Liu T.-Y. Study on feature selection issues in ensemble learning, Ph.D. Thesis, School of Computer Engineering and Science, Shanghai University, China, 2007.
-
(2007)
-
-
Liu, T.-Y.1
-
24
-
-
0031189914
-
Multitask learning
-
Machine Learning
-
Caruana, R. Multitask learning. Machine Learning, 28(1): 41-75, 1997.
-
(1997)
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
25
-
-
2942734703
-
Benefiting from the variables that variable selection discards
-
Caruana, R. and de Sa, V. R. Benefiting from the variables that variable selection discards. Journal of Machine Learning Research, 3: 1245-1264, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1245-1264
-
-
Caruana, R.1
De Sa, V.R.2
-
26
-
-
33845739910
-
On multivariate calibration problems
-
Proceedings of the International Symposium on Neural Networks, Lecture Notes on Computer Science, Springer
-
Li, G.-Z., Yang, J. Lu, J. Lu,W.-C., and Chen, N.-Y. On multivariate calibration problems. Proceedings of the International Symposium on Neural Networks, Lecture Notes on Computer Science Vol. 3173, Springer, pp. 389-394, 2004.
-
(2004)
, vol.3173
, pp. 389-394
-
-
Li, G.-Z.1
Yang, J.2
Lu, J.3
Lu, W.-C.4
Chen, N.-Y.5
-
27
-
-
33845734163
-
Improving generalization ability of neural networks ensemble with multi-task learning
-
Li, G.-Z. and Liu, T.-Y. Improving generalization ability of neural networks ensemble with multi-task learning. Journal of Computational Information Systems, 2(4): 1235-1239, 2006.
-
(2006)
Journal of Computational Information Systems
, vol.2
, Issue.4
, pp. 1235-1239
-
-
Li, G.-Z.1
Liu, T.-Y.2
-
28
-
-
0003722376
-
Genetic Algorithms in Search, Optimization, and Machine Learning
-
Addison Wesley, Boston
-
Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Boston, 1998.
-
(1998)
-
-
Goldberg, D.E.1
-
29
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
Yang, J. and Honavar, V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13: 44-49, 1998.
-
(1998)
IEEE Intelligent Systems
, vol.13
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
30
-
-
26944501740
-
Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
-
Valentini, G. and Dietterich, T. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research, 5 (1): 725-775, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, Issue.1
, pp. 725-775
-
-
Valentini, G.1
Dietterich, T.2
-
31
-
-
22944447138
-
Feature selection for multi-class problems using support vector machines
-
Proceedings of 8th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2004), Springer
-
Li, G.,-Z., Yang, J., Liu, G. P., and Xue, L. Feature selection for multi-class problems using support vector machines. Proceedings of 8th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2004), Vol. 3173, Springer, pp. 292-300, 2004.
-
(2004)
, vol.3173
, pp. 292-300
-
-
Li, G.-Z.1
Yang, J.2
Liu, G.P.3
Xue, L.4
-
32
-
-
0000513303
-
Principled architecture selection for neural networks: application to corporate bond rating prediction
-
In: J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds, Morgan Kaufmann Publishers, Inc.
-
Moody, J. and Utans, J. Principled architecture selection for neural networks: application to corporate bond rating prediction. In: J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds, Advances in Neural Information Processing Systems, Morgan Kaufmann Publishers, Inc., pp. 683-690, 1992.
-
(1992)
Advances in Neural Information Processing Systems
, pp. 683-690
-
-
Moody, J.1
Utans, J.2
-
33
-
-
0003408496
-
UCI repository of machine learning databases
-
Technical report, Department of Information and Computer Science, University of California, Irvine, CA, Available at
-
Blake, C., Keogh, E., and Merz., C. J. UCI repository of machine learning databases. Technical report, Department of Information and Computer Science, University of California, Irvine, CA, 1998. Available at http://www.ics.uci.edu/mlearn/MLRepository. htm.
-
(1998)
-
-
Blake, C.1
Keogh, E.2
Merz, C.J.3
-
34
-
-
0030702721
-
Gauss-Newton approximation to Bayesian regularization
-
Proceedings of the 1997 International Joint Conference on Neural Networks
-
Foresee, F. D. and Hagan, M. T. Gauss-Newton approximation to Bayesian regularization. Proceedings of the 1997 International Joint Conference on Neural Networks, pp. 1930-1935, 1997.
-
(1997)
, pp. 1930-1935
-
-
Foresee, F.D.1
Hagan, M.T.2
-
35
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
Kudo, M. and Sklansky, J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 33(1): 25-41, 2000.
-
(2000)
Pattern Recognition
, vol.33
, Issue.1
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
36
-
-
0032927688
-
The p21-ras signal transduction pathway and growth regulation in human high-grade gliomas
-
Bredel, M. and Pollack, L. F. The p21-ras signal transduction pathway and growth regulation in human high-grade gliomas. Brain Research Reviews, 29: 232-249, 1999.
-
(1999)
Brain Research Reviews
, vol.29
, pp. 232-249
-
-
Bredel, M.1
Pollack, L.F.2
-
37
-
-
0033975634
-
Surgical treatment of primary midbrain gliomas
-
Wang, C., Zhang, J., Liu, A., Sun, B., and Zhao, Y. Surgical treatment of primary midbrain gliomas. Surgical Neurology, 53: 41-51, 2000.
-
(2000)
Surgical Neurology
, vol.53
, pp. 41-51
-
-
Wang, C.1
Zhang, J.2
Liu, A.3
Sun, B.4
Zhao, Y.5
-
38
-
-
0033999251
-
Brain tumors in Mexico: characteristics and prognosis of glioblastoma
-
Gonzalez, M. A. L. and Sotelo, J. Brain tumors in Mexico: characteristics and prognosis of glioblastoma. Surgical Neurology, 53: 157-162, 2000.
-
(2000)
Surgical Neurology
, vol.53
, pp. 157-162
-
-
Gonzalez, M.A.L.1
Sotelo, J.2
-
39
-
-
0034015832
-
Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma, treated with selective intra-arteral chemotherapy
-
Chow, L. K., Gobin, Y. P., Cloughesy, T. F., Sayre, J.W., Villablanca, J. P., and Vinuela, F. Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma, treated with selective intra-arteral chemotherapy. AJNR American Journal of Neuroradiology, 21: 471-478, 2000.
-
(2000)
AJNR American Journal of Neuroradiology
, vol.21
, pp. 471-478
-
-
Chow, L.K.1
Gobin, Y.P.2
Cloughesy, T.F.3
Sayre, J.W.4
Villablanca, J.P.5
Vinuela, F.6
-
40
-
-
0036261876
-
Fuzzy rules to predict degree of malignancy in brain glioma
-
Ye, C.-Z.,Yang, J., Geng, D.-Y., Zhou,Y., and Chen., N.-Y. Fuzzy rules to predict degree of malignancy in brain glioma. Medical and Biological Engineering and Computing, 40: 145-152, 2002.
-
(2002)
Medical and Biological Engineering and Computing
, vol.40
, pp. 145-152
-
-
Ye, C.-Z.1
Yang, J.2
Geng, D.-Y.3
Zhou, Y.4
Chen, N.-Y.5
-
41
-
-
31544469809
-
Degree prediction of malignancy in brain glioma using support vector machines
-
Li, G.-Z., Yang, J., Ye, C.-Z., and Geng, D. Degree prediction of malignancy in brain glioma using support vector machines. Computers in Biology and Medicine, 36(3): 313-325, 2006.
-
(2006)
Computers in Biology and Medicine
, vol.36
, Issue.3
, pp. 313-325
-
-
Li, G.-Z.1
Yang, J.2
Ye, C.-Z.3
Geng, D.4
-
42
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi, R. and George, J. H. Wrappers for feature subset selection. Artificial Intelligence, 97: 273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
George, J.H.2
-
43
-
-
0030905111
-
Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks
-
Arle, J. E., Morriss, C., Wang, Z., Zimmerman, R. A., Phillips, P. G., and Sutton, L. N. Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. Journal of Neurosurgery, 86: 755-761, 1997.
-
(1997)
Journal of Neurosurgery
, vol.86
, pp. 755-761
-
-
Arle, J.E.1
Morriss, C.2
Wang, Z.3
Zimmerman, R.A.4
Phillips, P.G.5
Sutton, L.N.6
-
44
-
-
84988383115
-
Classification of brain glioma by using neural networks ensemble with multi-task learning
-
Proceedings of the 2007 International Conference on Bioinformatics and Computational Biology (BIOCOMP'07), CSREA Press, Nevada
-
Yang, J. Y., Li, G.-Z., Liu, L.-X., and Yang, M. Q. Classification of brain glioma by using neural networks ensemble with multi-task learning. Proceedings of the 2007 International Conference on Bioinformatics and Computational Biology (BIOCOMP'07), CSREA Press, Nevada, pp. 515-522, 2007.
-
(2007)
, pp. 515-522
-
-
Yang, J.Y.1
Li, G.-Z.2
Liu, L.-X.3
Yang, M.Q.4
|