메뉴 건너뛰기




Volumn , Issue , 2008, Pages 135-155

Feature Selection for Ensemble Learning and Its Application

Author keywords

Ensemble learning such as bagging and boosting for single learning machines; Feature selection for ensemble learning and its application; Multitask learning

Indexed keywords


EID: 70350739430     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1002/9780470397428.ch6     Document Type: Chapter
Times cited : (9)

References (44)
  • 1
    • 0031361611 scopus 로고    scopus 로고
    • Machine-learning research: four current directions
    • Dietterich, T. Machine-learning research: four current directions. The AI Magazine, 18(4): 97-136, 1998.
    • (1998) The AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.1
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Machine Learning
    • Breiman, L. Bagging predictors. Machine Learning, 24(2): 123-140, 1996.
    • (1996) , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer, E. and Kohavi, R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Machine Learning, 36(2): 105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • (Oct)
    • Yu, L. and Liu, H. Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5(Oct): 1205-24, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 7
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu, H. and Yu, L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(3): 1-12, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 9
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for construction decision forests
    • Ho, T. The random subspace method for construction decision forests. IEEE Transaction Pattern Analysis and Machine Intelligence, 20(8): 832-844, 1998.
    • (1998) IEEE Transaction Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.1
  • 10
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition
    • Simon, G. and Horst, B. Feature selection algorithms for the generation of multiple classifier systems and their application to handwritten word recognition. Pattern Recognition Letters, 25(1): 1323-1336, 2004.
    • (2004) Pattern Recognition Letters , vol.25 , Issue.1 , pp. 1323-1336
    • Simon, G.1    Horst, B.2
  • 11
    • 0032596573 scopus 로고    scopus 로고
    • Feature selection for ensembles
    • Proceedings of the 16th National Conference on Artificial Intelligence (AAAI)
    • Optiz, D., Feature selection for ensembles. Proceedings of the 16th National Conference on Artificial Intelligence (AAAI), pp. 379-384, 1999.
    • Optiz, D.1
  • 12
    • 18044365477 scopus 로고    scopus 로고
    • Feature selection using multiobjective genetic algorithms for handwritten digit recognition
    • The 16th International Conference on Pattern Recognition
    • Oliveira, L., Sabourin, R., Bortolozzi, F., and Suen, C. Feature selection using multiobjective genetic algorithms for handwritten digit recognition. The 16th International Conference on Pattern Recognition, pp. 568-571, 2002.
    • (2002) , pp. 568-571
    • Oliveira, L.1    Sabourin, R.2    Bortolozzi, F.3    Suen, C.4
  • 13
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Brylla, R. Gutierrez-Osunab, R., and Queka, F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36(6): 1291-1302, 2003.
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Brylla, R.1    Gutierrez-Osunab, R.2    Queka, F.3
  • 14
    • 0042622207 scopus 로고    scopus 로고
    • Search strategies for ensemble feature selection in medical diagnostics
    • Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems (CBMS)
    • Tsymbal, A. and Cunningham, P. Search strategies for ensemble feature selection in medical diagnostics. Proceedings of the 16th IEEE Symposium on Computer-Based Medical Systems (CBMS), pp. 124-129, 2003.
    • (2003) , pp. 124-129
    • Tsymbal, A.1    Cunningham, P.2
  • 15
    • 33750378040 scopus 로고    scopus 로고
    • Sequential genetic search for ensemble feature selection
    • Proceedings of the International Joint Conference on Artificial Intelligence 2005 (IJCAI2005), Edinburgh, Scotland
    • Tsymbal, A., Pechenizkiy, M., and Cunningham, P. Sequential genetic search for ensemble feature selection. Proceedings of the International Joint Conference on Artificial Intelligence 2005 (IJCAI2005), Edinburgh, Scotland, pp. 877-882, 2005.
    • (2005) , pp. 877-882
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 16
    • 69649084187 scopus 로고    scopus 로고
    • Improving nearest neighbor classifier using tabu search and ensemble distance metrics
    • Sixth International Conference on Data Mining, (ICDM 06), IEEE Press
    • Tahir, M. A. and Smith, J. Improving nearest neighbor classifier using tabu search and ensemble distance metrics. Sixth International Conference on Data Mining, (ICDM 06), IEEE Press, pp. 1086-1090, 2006.
    • (2006) , pp. 1086-1090
    • Tahir, M.A.1    Smith, J.2
  • 17
    • 33745795958 scopus 로고    scopus 로고
    • Classification of brain glioma by using SVM bagging with feature selection
    • Proceedings of Workshop on Data Mining for Biomedical Application 2006 (BioDM2006), Springer
    • Li, G.-Z., Liu, T.-Y., and Cheng, V. S. Classification of brain glioma by using SVM bagging with feature selection. Proceedings of Workshop on Data Mining for Biomedical Application 2006 (BioDM2006). Vol. 3916, Springer, pp. 124-130, 2006.
    • (2006) , vol.3916 , pp. 124-130
    • Li, G.-Z.1    Liu, T.-Y.2    Cheng, V.S.3
  • 18
    • 33745894939 scopus 로고    scopus 로고
    • Estimation of the future earthquake situation by using neural networks ensemble
    • Proceedings of the International Symposium on Neural Networks, Lecture Notes in Computer Science, Springer
    • Liu, T.-Y., Li, G.-Z., Liu, Y., Wu, G., and Wang., W. Estimation of the future earthquake situation by using neural networks ensemble. Proceedings of the International Symposium on Neural Networks, Lecture Notes in Computer Science, Vol. 3973, Springer, pp. 1231-1236, 2006.
    • (2006) , vol.3973 , pp. 1231-1236
    • Liu, T.-Y.1    Li, G.-Z.2    Liu, Y.3    Wu, G.4    Wang, W.5
  • 19
    • 33749573711 scopus 로고    scopus 로고
    • Feature selection for bagging of support vector machines
    • Proceedings of 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2006), Springer
    • Li, G.-Z. and Liu, T.-Y. Feature selection for bagging of support vector machines. Proceedings of 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2006) Vol. 4099, Springer, pp. 271-277, 2006.
    • (2006) , vol.4099 , pp. 271-277
    • Li, G.-Z.1    Liu, T.-Y.2
  • 20
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou, Z.-H., Wu, J.-X., and Tang, W. Ensembling neural networks: many could be better than all. Artificial Intelligence, 137(1-2): 239-263, 2002.
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.-X.2    Tang, W.3
  • 21
    • 14344255621 scopus 로고    scopus 로고
    • Ensemble selection from libraries of models
    • Proceedings of the 21st International Conference on Machine Learning (ICML 2004), ACM Press
    • Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A. Ensemble selection from libraries of models. Proceedings of the 21st International Conference on Machine Learning (ICML 2004), ACM Press, pp. 137-144, 2004.
    • (2004) , pp. 137-144
    • Caruana, R.1    Niculescu-Mizil, A.2    Crew, G.3    Ksikes, A.4
  • 22
    • 48749096852 scopus 로고    scopus 로고
    • Getting the most out of ensemble selection
    • Sixth International Conference on Data Mining (ICDM'06), IEEE Press
    • Caruana, R., Munson, A., and Niculescu-Mizil, A. Getting the most out of ensemble selection. Sixth International Conference on Data Mining (ICDM'06), IEEE Press, pp. 828-833, 2006.
    • (2006) , pp. 828-833
    • Caruana, R.1    Munson, A.2    Niculescu-Mizil, A.3
  • 23
    • 84889768489 scopus 로고    scopus 로고
    • Study on feature selection issues in ensemble learning
    • Ph.D. Thesis, School of Computer Engineering and Science, Shanghai University, China
    • Liu T.-Y. Study on feature selection issues in ensemble learning, Ph.D. Thesis, School of Computer Engineering and Science, Shanghai University, China, 2007.
    • (2007)
    • Liu, T.-Y.1
  • 24
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Machine Learning
    • Caruana, R. Multitask learning. Machine Learning, 28(1): 41-75, 1997.
    • (1997) , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 25
    • 2942734703 scopus 로고    scopus 로고
    • Benefiting from the variables that variable selection discards
    • Caruana, R. and de Sa, V. R. Benefiting from the variables that variable selection discards. Journal of Machine Learning Research, 3: 1245-1264, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1245-1264
    • Caruana, R.1    De Sa, V.R.2
  • 26
    • 33845739910 scopus 로고    scopus 로고
    • On multivariate calibration problems
    • Proceedings of the International Symposium on Neural Networks, Lecture Notes on Computer Science, Springer
    • Li, G.-Z., Yang, J. Lu, J. Lu,W.-C., and Chen, N.-Y. On multivariate calibration problems. Proceedings of the International Symposium on Neural Networks, Lecture Notes on Computer Science Vol. 3173, Springer, pp. 389-394, 2004.
    • (2004) , vol.3173 , pp. 389-394
    • Li, G.-Z.1    Yang, J.2    Lu, J.3    Lu, W.-C.4    Chen, N.-Y.5
  • 27
    • 33845734163 scopus 로고    scopus 로고
    • Improving generalization ability of neural networks ensemble with multi-task learning
    • Li, G.-Z. and Liu, T.-Y. Improving generalization ability of neural networks ensemble with multi-task learning. Journal of Computational Information Systems, 2(4): 1235-1239, 2006.
    • (2006) Journal of Computational Information Systems , vol.2 , Issue.4 , pp. 1235-1239
    • Li, G.-Z.1    Liu, T.-Y.2
  • 28
    • 0003722376 scopus 로고    scopus 로고
    • Genetic Algorithms in Search, Optimization, and Machine Learning
    • Addison Wesley, Boston
    • Goldberg, D. E. Genetic Algorithms in Search, Optimization, and Machine Learning, Addison Wesley, Boston, 1998.
    • (1998)
    • Goldberg, D.E.1
  • 29
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang, J. and Honavar, V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13: 44-49, 1998.
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 30
    • 26944501740 scopus 로고    scopus 로고
    • Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods
    • Valentini, G. and Dietterich, T. Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research, 5 (1): 725-775, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , Issue.1 , pp. 725-775
    • Valentini, G.1    Dietterich, T.2
  • 31
    • 22944447138 scopus 로고    scopus 로고
    • Feature selection for multi-class problems using support vector machines
    • Proceedings of 8th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2004), Springer
    • Li, G.,-Z., Yang, J., Liu, G. P., and Xue, L. Feature selection for multi-class problems using support vector machines. Proceedings of 8th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI2004), Vol. 3173, Springer, pp. 292-300, 2004.
    • (2004) , vol.3173 , pp. 292-300
    • Li, G.-Z.1    Yang, J.2    Liu, G.P.3    Xue, L.4
  • 32
    • 0000513303 scopus 로고
    • Principled architecture selection for neural networks: application to corporate bond rating prediction
    • In: J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds, Morgan Kaufmann Publishers, Inc.
    • Moody, J. and Utans, J. Principled architecture selection for neural networks: application to corporate bond rating prediction. In: J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds, Advances in Neural Information Processing Systems, Morgan Kaufmann Publishers, Inc., pp. 683-690, 1992.
    • (1992) Advances in Neural Information Processing Systems , pp. 683-690
    • Moody, J.1    Utans, J.2
  • 33
    • 0003408496 scopus 로고    scopus 로고
    • UCI repository of machine learning databases
    • Technical report, Department of Information and Computer Science, University of California, Irvine, CA, Available at
    • Blake, C., Keogh, E., and Merz., C. J. UCI repository of machine learning databases. Technical report, Department of Information and Computer Science, University of California, Irvine, CA, 1998. Available at http://www.ics.uci.edu/mlearn/MLRepository. htm.
    • (1998)
    • Blake, C.1    Keogh, E.2    Merz, C.J.3
  • 34
    • 0030702721 scopus 로고    scopus 로고
    • Gauss-Newton approximation to Bayesian regularization
    • Proceedings of the 1997 International Joint Conference on Neural Networks
    • Foresee, F. D. and Hagan, M. T. Gauss-Newton approximation to Bayesian regularization. Proceedings of the 1997 International Joint Conference on Neural Networks, pp. 1930-1935, 1997.
    • (1997) , pp. 1930-1935
    • Foresee, F.D.1    Hagan, M.T.2
  • 35
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo, M. and Sklansky, J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 33(1): 25-41, 2000.
    • (2000) Pattern Recognition , vol.33 , Issue.1 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 36
    • 0032927688 scopus 로고    scopus 로고
    • The p21-ras signal transduction pathway and growth regulation in human high-grade gliomas
    • Bredel, M. and Pollack, L. F. The p21-ras signal transduction pathway and growth regulation in human high-grade gliomas. Brain Research Reviews, 29: 232-249, 1999.
    • (1999) Brain Research Reviews , vol.29 , pp. 232-249
    • Bredel, M.1    Pollack, L.F.2
  • 37
  • 38
    • 0033999251 scopus 로고    scopus 로고
    • Brain tumors in Mexico: characteristics and prognosis of glioblastoma
    • Gonzalez, M. A. L. and Sotelo, J. Brain tumors in Mexico: characteristics and prognosis of glioblastoma. Surgical Neurology, 53: 157-162, 2000.
    • (2000) Surgical Neurology , vol.53 , pp. 157-162
    • Gonzalez, M.A.L.1    Sotelo, J.2
  • 39
    • 0034015832 scopus 로고    scopus 로고
    • Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma, treated with selective intra-arteral chemotherapy
    • Chow, L. K., Gobin, Y. P., Cloughesy, T. F., Sayre, J.W., Villablanca, J. P., and Vinuela, F. Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma, treated with selective intra-arteral chemotherapy. AJNR American Journal of Neuroradiology, 21: 471-478, 2000.
    • (2000) AJNR American Journal of Neuroradiology , vol.21 , pp. 471-478
    • Chow, L.K.1    Gobin, Y.P.2    Cloughesy, T.F.3    Sayre, J.W.4    Villablanca, J.P.5    Vinuela, F.6
  • 41
    • 31544469809 scopus 로고    scopus 로고
    • Degree prediction of malignancy in brain glioma using support vector machines
    • Li, G.-Z., Yang, J., Ye, C.-Z., and Geng, D. Degree prediction of malignancy in brain glioma using support vector machines. Computers in Biology and Medicine, 36(3): 313-325, 2006.
    • (2006) Computers in Biology and Medicine , vol.36 , Issue.3 , pp. 313-325
    • Li, G.-Z.1    Yang, J.2    Ye, C.-Z.3    Geng, D.4
  • 42
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi, R. and George, J. H. Wrappers for feature subset selection. Artificial Intelligence, 97: 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    George, J.H.2
  • 43
    • 0030905111 scopus 로고    scopus 로고
    • Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks
    • Arle, J. E., Morriss, C., Wang, Z., Zimmerman, R. A., Phillips, P. G., and Sutton, L. N. Prediction of posterior fossa tumor type in children by means of magnetic resonance image properties, spectroscopy, and neural networks. Journal of Neurosurgery, 86: 755-761, 1997.
    • (1997) Journal of Neurosurgery , vol.86 , pp. 755-761
    • Arle, J.E.1    Morriss, C.2    Wang, Z.3    Zimmerman, R.A.4    Phillips, P.G.5    Sutton, L.N.6
  • 44
    • 84988383115 scopus 로고    scopus 로고
    • Classification of brain glioma by using neural networks ensemble with multi-task learning
    • Proceedings of the 2007 International Conference on Bioinformatics and Computational Biology (BIOCOMP'07), CSREA Press, Nevada
    • Yang, J. Y., Li, G.-Z., Liu, L.-X., and Yang, M. Q. Classification of brain glioma by using neural networks ensemble with multi-task learning. Proceedings of the 2007 International Conference on Bioinformatics and Computational Biology (BIOCOMP'07), CSREA Press, Nevada, pp. 515-522, 2007.
    • (2007) , pp. 515-522
    • Yang, J.Y.1    Li, G.-Z.2    Liu, L.-X.3    Yang, M.Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.