-
1
-
-
0030095171
-
Hailfinder: A Bayesian system for forecasting severe weather
-
Abramson, B., Brown, J., Murphy, A., Winker, R.L.: Hailfinder: a Bayesian system for forecasting severe weather. Int. J. Forecast. 12, 57-71 (1996).
-
(1996)
Int. J. Forecast.
, vol.12
, pp. 57-71
-
-
Abramson, B.1
Brown, J.2
Murphy, A.3
Winker, R.L.4
-
2
-
-
21244484641
-
Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
-
Acid, S., de Campos, L.M.: Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. J. Artif. Intell. Res. 18, 445-490 (2003).
-
(2003)
J. Artif. Intell. Res.
, vol.18
, pp. 445-490
-
-
Acid, S.1
de Campos, L.M.2
-
3
-
-
0037262814
-
An introduction to MCMC for machine learning
-
Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50, 5-43 (2003).
-
(2003)
Mach. Learn.
, vol.50
, pp. 5-43
-
-
Andrieu, C.1
de Freitas, N.2
Doucet, A.3
Jordan, M.I.4
-
4
-
-
23144439033
-
Markov chain Monte Carlo using tree-based priors on model structure
-
J. Breese and D. Koller (Eds.), San Francisco: Morgan Kaufmann
-
Angelopoulos, N., Cussens, J.: Markov chain Monte Carlo using tree-based priors on model structure. In: Breese, J., Koller, D. (eds.) Proceedings of the Seventeenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2001), Seattle, August 2001. Morgan Kaufmann, San Francisco (2001).
-
(2001)
Proceedings of the Seventeenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2001), Seattle, August 2001
-
-
Angelopoulos, N.1
Cussens, J.2
-
5
-
-
70350025399
-
-
Angelopoulos, N., Cussens, J.: Extended stochastic logic programs for informative priors over C&RTs. In: Camacho, R., King, R., Srinivasan, A. (eds.) Proceedings of the work-in-progress track of the Fourteenth International Conference on Inductive Logic Programming (ILP04), pp. 7-11, Porto, September 2004
-
Angelopoulos, N., Cussens, J.: Extended stochastic logic programs for informative priors over C&RTs. In: Camacho, R., King, R., Srinivasan, A. (eds.) Proceedings of the work-in-progress track of the Fourteenth International Conference on Inductive Logic Programming (ILP04), pp. 7-11, Porto, September 2004.
-
-
-
-
6
-
-
70350033848
-
-
Angelopoulos, N., Cussens, J.: On the implementation of MCMC proposals over stochastic logic programs. In: Colloquium on Implementation of Constraint and LOgic Programming Systems. Satellite workshop to ICLP'04, Saint-Malo, September 2004
-
Angelopoulos, N., Cussens, J.: On the implementation of MCMC proposals over stochastic logic programs. In: Colloquium on Implementation of Constraint and LOgic Programming Systems. Satellite workshop to ICLP'04, Saint-Malo, September 2004.
-
-
-
-
7
-
-
84880735253
-
-
Angelopoulos, N., Cussens, J.: Exploiting informative priors for Bayesian classification and regression trees. In: Proc. 19th International Joint Conference on AI (IJCAI-05), Edinburgh, August 2005
-
Angelopoulos, N., Cussens, J.: Exploiting informative priors for Bayesian classification and regression trees. In: Proc. 19th International Joint Conference on AI (IJCAI-05), Edinburgh, August 2005.
-
-
-
-
8
-
-
70350010012
-
-
Angelopoulos, N., Cussens, J.: MCMCMS 0.3.4 User Guide. University of York (2005)
-
Angelopoulos, N., Cussens, J.: MCMCMS 0.3.4 User Guide. University of York (2005).
-
-
-
-
9
-
-
31844456637
-
-
Angelopoulos, N., Cussens, J.: Tempering for Bayesian C&RT. In: Proceedings of the 22nd International Conference on Machine Learning (ICML05), Bonn, 7-11 August 2005
-
Angelopoulos, N., Cussens, J.: Tempering for Bayesian C&RT. In: Proceedings of the 22nd International Conference on Machine Learning (ICML05), Bonn, 7-11 August 2005.
-
-
-
-
10
-
-
70350029445
-
-
Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The alarm monitoring system: a case study with two probabilistic inference techniques for belief networks. In: Proceedings of the European Conference on Artificial Intelligence in Medicine, pp. 247-256, London, 29-31 August 1989
-
Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The alarm monitoring system: a case study with two probabilistic inference techniques for belief networks. In: Proceedings of the European Conference on Artificial Intelligence in Medicine, pp. 247-256, London, 29-31 August 1989.
-
-
-
-
11
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Mach. Learn. 29, 213-244 (1997).
-
(1997)
Mach. Learn.
, vol.29
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
12
-
-
4544365481
-
Deal: A package for learning Bayesian networks
-
Bøttcher, S.G., Dethlefsen, C.: Deal: a package for learning Bayesian networks. J. Stat. Softw. 8(20), 1-40 (2003).
-
(2003)
J. Stat. Softw.
, vol.8
, Issue.20
, pp. 1-40
-
-
Bøttcher, S.G.1
Dethlefsen, C.2
-
13
-
-
70350015218
-
-
Buntine, W.L.: Theory refinement of Bayesian networks. In: D'Ambrosio, B., Smets, P., Bonissone, P. (eds.) Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-1991), pp. 52-60, San Mateo, 13-15 July 1991
-
Buntine, W.L.: Theory refinement of Bayesian networks. In: D'Ambrosio, B., Smets, P., Bonissone, P. (eds.) Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-1991), pp. 52-60, San Mateo, 13-15 July 1991.
-
-
-
-
15
-
-
2542465947
-
On inclusion-driven learning of Bayesian networks
-
Castelo, R., Kočka, T.: On inclusion-driven learning of Bayesian networks. J. Mach. Learn. Res. 4, 527-574 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 527-574
-
-
Castelo, R.1
Kočka, T.2
-
16
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Appeared as 1991 Technical Report KSL-91-02 for the Knowledge Systems Laboratory, Stanford University (also SMI-91-0355)
-
Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309-347 (1992). Appeared as 1991 Technical Report KSL-91-02 for the Knowledge Systems Laboratory, Stanford University (also SMI-91-0355).
-
(1992)
Mach. Learn.
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
17
-
-
2342490300
-
Stochastic logic programs: Sampling, inference and applications
-
San Francisco: Morgan Kaufmann
-
Cussens, J.: Stochastic logic programs: sampling, inference and applications. In: Proc. UAI-00, pp. 115-122. Morgan Kaufmann, San Francisco (2000).
-
(2000)
Proc. UAI-00, pp. 115-122
-
-
Cussens, J.1
-
18
-
-
0035451897
-
Parameter estimation in stochastic logic programs
-
Cussens, J.: Parameter estimation in stochastic logic programs. Mach. Learn. 44(3), 245-271 (2001).
-
(2001)
Mach. Learn.
, vol.44
, Issue.3
, pp. 245-271
-
-
Cussens, J.1
-
19
-
-
15944399178
-
Sparse graphical models for exploring gene expression data
-
Dobra, A., Jones B., Hans, C., Nevins J., West, M.: Sparse graphical models for exploring gene expression data. J. Multivar. Anal. 90, 196-212 (2004).
-
(2004)
J. Multivar. Anal.
, vol.90
, pp. 196-212
-
-
Dobra, A.1
Jones, B.2
Hans, C.3
Nevins, J.4
West, M.5
-
20
-
-
0034621283
-
Beyond traditional paternity and identification cases. Selecting the most probable pedigree
-
Egeland, T., Mostad, P., Mevåg, B., Stenersen, M.: Beyond traditional paternity and identification cases. Selecting the most probable pedigree. Forensic Sci. Int. 110(1), 47-59 (2000).
-
(2000)
Forensic Sci. Int.
, vol.110
, Issue.1
, pp. 47-59
-
-
Egeland, T.1
Mostad, P.2
Mevåg, B.3
Stenersen, M.4
-
22
-
-
70350035834
-
-
Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1879)
-
Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1879).
-
-
-
-
23
-
-
0037262841
-
Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
-
Friedman, N., Koller, D.: Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50, 95-126 (2003).
-
(2003)
Mach. Learn.
, vol.50
, pp. 95-126
-
-
Friedman, N.1
Koller, D.2
-
24
-
-
2942628165
-
Parameterization and Bayesian modeling
-
Gelman, A.: Parameterization and Bayesian modeling. J. Am. Stat. Assoc. 99(466), 537-545 (2004).
-
(2004)
J. Am. Stat. Assoc.
, vol.99
, Issue.466
, pp. 537-545
-
-
Gelman, A.1
-
25
-
-
0003860037
-
-
W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London: Chapman & Hall
-
Gilks, W.R., Richardson, S., Spiegelhalter, D.J., (eds.).: Markov Chain Monte Carlo in Practice. Chapman & Hall, London (1996).
-
(1996)
Markov Chain Monte Carlo in Practice
-
-
-
26
-
-
0003541456
-
-
London Mathematical Society Student Texts52, Cambridge: Cambridge University Press
-
Häggström, O.: Finite Markov Chains and Algorithmic Applications. London Mathematical Society Student Texts, vol. 52. Cambridge University Press, Cambridge (2002).
-
(2002)
Finite Markov Chains and Algorithmic Applications
-
-
Häggström, O.1
-
27
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Also appears as Technical Report MSR-TR-94-09, Microsoft Research, March, 1994 (revised December, 1994)
-
Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197-243 (1995). Also appears as Technical Report MSR-TR-94-09, Microsoft Research, March, 1994 (revised December, 1994).
-
(1995)
Mach. Learn.
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
28
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency networks for inference, collaborative filtering, and data visualization. J. Mach. Learn. Res. 1, 49-75 (2000).
-
(2000)
J. Mach. Learn. Res.
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
29
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197-243 (1995).
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
30
-
-
0000857850
-
BIFROST-block recursive models induced from relevant knowledge, observations, and statistical techniques
-
Højsgaard, S., Thiesson, B.: BIFROST-block recursive models induced from relevant knowledge, observations, and statistical techniques. Comput. Stat. Data Anal. 19, 155-175 (1995).
-
(1995)
Comput. Stat. Data Anal.
, vol.19
, pp. 155-175
-
-
Højsgaard, S.1
Thiesson, B.2
-
32
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5, 549-573 (2004).
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
33
-
-
2342533144
-
Fusion of domain knowledge with data for structural learning in object oriented domains
-
Langseth, H., Nielsen, T.D.: Fusion of domain knowledge with data for structural learning in object oriented domains. J. Mach. Learn. Res. 4, 339-368 (2003).
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 339-368
-
-
Langseth, H.1
Nielsen, T.D.2
-
34
-
-
0037266164
-
Population Markov chain Monte Carlo
-
Laskey, K.B., Myers, J.W.: Population Markov chain Monte Carlo. Mach. Learn. 50, 175-196 (2003).
-
(2003)
Mach. Learn.
, vol.50
, pp. 175-196
-
-
Laskey, K.B.1
Myers, J.W.2
-
35
-
-
0036420729
-
Chain graph models and their causal interpretations
-
Lauritzen, S.L., Richardson, T.S.: Chain graph models and their causal interpretations. J. R. Stat. Soc. B 64(3), 321-361 (2002).
-
(2002)
J. R. Stat. Soc. B
, vol.64
, Issue.3
, pp. 321-361
-
-
Lauritzen, S.L.1
Richardson, T.S.2
-
36
-
-
0001006209
-
Local computations with probabilities on graphical structures and their applications to expert systems
-
Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their applications to expert systems. J. R. Stat. Soc. A 50(2), 157-224 (1988).
-
(1988)
J. R. Stat. Soc. A
, vol.50
, Issue.2
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
37
-
-
21844520724
-
Bayesian graphical models for discrete data
-
Madigan, D., York, J.: Bayesian graphical models for discrete data. Int. Stat. Rev. 63, 215-232 (1995).
-
(1995)
Int. Stat. Rev.
, vol.63
, pp. 215-232
-
-
Madigan, D.1
York, J.2
-
38
-
-
84950179515
-
Eliciting prior information to enhance the predictive performance of Bayesian graphical models
-
Appeared as 1994 Technical Report 270, University of Washington
-
Madigan, D., Gavrin, J., Raftery, A.E.: Eliciting prior information to enhance the predictive performance of Bayesian graphical models. Commun. Stat. Theory Methods 24, 2271-2292 (1995). Appeared as 1994 Technical Report 270, University of Washington.
-
(1995)
Commun. Stat. Theory Methods
, vol.24
, pp. 2271-2292
-
-
Madigan, D.1
Gavrin, J.2
Raftery, A.E.3
-
39
-
-
84950945692
-
Model selection and accounting for model uncertainty in graphical models using Occam's window
-
First version was 1991 Technical Report 213, University of Washington
-
Madigan, D., Raftery, A.E.: Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Am. Stat. Assoc. 89, 1535-1546 (1994). First version was 1991 Technical Report 213, University of Washington.
-
(1994)
J. Am. Stat. Assoc.
, vol.89
, pp. 1535-1546
-
-
Madigan, D.1
Raftery, A.E.2
-
40
-
-
0002205343
-
Stochastic logic programs
-
Frontiers in Artificial Intelligence and Applications32, L. RaedtDe (Ed.), Amsterdam: IOS
-
Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming. Frontiers in Artificial Intelligence and Applications, vol. 32, pp. 254-264. IOS, Amsterdam (1996).
-
(1996)
Advances in Inductive Logic Programming
, pp. 254-264
-
-
Muggleton, S.1
-
41
-
-
0003659141
-
-
2, Chichester: Wiley
-
Nilsson, U., Małuszyński, J.: Logic, Programming and Prolog, 2nd edn. Wiley, Chichester (1995).
-
(1995)
Logic, Programming and Prolog
-
-
Nilsson, U.1
Małuszyński, J.2
-
44
-
-
4444281941
-
Parameter learning of logic programs for symbolic-statistical modeling
-
Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391-454 (2001).
-
(2001)
J. Artif. Intell. Res.
, vol.15
, pp. 391-454
-
-
Sato, T.1
Kameya, Y.2
-
45
-
-
21844455527
-
Learning module networks
-
Segal, E., Pe'er, D., Regev, A., Koller, D., Friedman, N.: Learning module networks. J. Mach. Learn. Res. 6, 557-588 (2005).
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 557-588
-
-
Segal, E.1
Pe'er, D.2
Regev, A.3
Koller, D.4
Friedman, N.5
-
46
-
-
70350031443
-
Graphical models for mapping continuous traits
-
P. J. Green, N. L. Hjort, and S. Richardson (Eds.), Oxford: Oxford University Press
-
Sheehan, N., Sorensen, D.: Graphical models for mapping continuous traits. In: Green, P.J., Hjort, N.L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 382-386. Oxford University Press, Oxford (2003).
-
(2003)
Highly Structured Stochastic Systems
, pp. 382-386
-
-
Sheehan, N.1
Sorensen, D.2
-
47
-
-
85012680398
-
Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information
-
M. Henrion, R. Schachter, L. Kanal, and J. Flemmer (Eds.), New York: Elsevier Science
-
Srinivas, S., Russell, S., Agogino, A.M.: Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information. In: Henrion, M., Schachter, R., Kanal, L., Flemmer, J. (eds.) Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference (UAI-1989), pp. 295-308. Elsevier Science, New York (1990).
-
(1990)
Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference (UAI-1989)
, pp. 295-308
-
-
Srinivas, S.1
Russell, S.2
Agogino, A.M.3
-
48
-
-
0242691208
-
A comparison of Bayesian methods for haplotype reconstruction from population genotype data
-
Stephens, M., Donelly, P.: A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162-1169 (2003).
-
(2003)
Am. J. Hum. Genet.
, vol.73
, pp. 1162-1169
-
-
Stephens, M.1
Donelly, P.2
|