메뉴 건너뛰기




Volumn 54, Issue 1-3, 2008, Pages 53-98

Bayesian learning of Bayesian networks with informative priors

Author keywords

Bayesian inference; Bayesian model averaging; Loss functions; Markov chain Monte Carlo; Prior knowledge; Stochastic logic programs

Indexed keywords


EID: 70350029369     PISSN: 10122443     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10472-009-9133-x     Document Type: Article
Times cited : (30)

References (48)
  • 1
    • 0030095171 scopus 로고    scopus 로고
    • Hailfinder: A Bayesian system for forecasting severe weather
    • Abramson, B., Brown, J., Murphy, A., Winker, R.L.: Hailfinder: a Bayesian system for forecasting severe weather. Int. J. Forecast. 12, 57-71 (1996).
    • (1996) Int. J. Forecast. , vol.12 , pp. 57-71
    • Abramson, B.1    Brown, J.2    Murphy, A.3    Winker, R.L.4
  • 2
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • Acid, S., de Campos, L.M.: Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. J. Artif. Intell. Res. 18, 445-490 (2003).
    • (2003) J. Artif. Intell. Res. , vol.18 , pp. 445-490
    • Acid, S.1    de Campos, L.M.2
  • 5
    • 70350025399 scopus 로고    scopus 로고
    • Angelopoulos, N., Cussens, J.: Extended stochastic logic programs for informative priors over C&RTs. In: Camacho, R., King, R., Srinivasan, A. (eds.) Proceedings of the work-in-progress track of the Fourteenth International Conference on Inductive Logic Programming (ILP04), pp. 7-11, Porto, September 2004
    • Angelopoulos, N., Cussens, J.: Extended stochastic logic programs for informative priors over C&RTs. In: Camacho, R., King, R., Srinivasan, A. (eds.) Proceedings of the work-in-progress track of the Fourteenth International Conference on Inductive Logic Programming (ILP04), pp. 7-11, Porto, September 2004.
  • 6
    • 70350033848 scopus 로고    scopus 로고
    • Angelopoulos, N., Cussens, J.: On the implementation of MCMC proposals over stochastic logic programs. In: Colloquium on Implementation of Constraint and LOgic Programming Systems. Satellite workshop to ICLP'04, Saint-Malo, September 2004
    • Angelopoulos, N., Cussens, J.: On the implementation of MCMC proposals over stochastic logic programs. In: Colloquium on Implementation of Constraint and LOgic Programming Systems. Satellite workshop to ICLP'04, Saint-Malo, September 2004.
  • 7
    • 84880735253 scopus 로고    scopus 로고
    • Angelopoulos, N., Cussens, J.: Exploiting informative priors for Bayesian classification and regression trees. In: Proc. 19th International Joint Conference on AI (IJCAI-05), Edinburgh, August 2005
    • Angelopoulos, N., Cussens, J.: Exploiting informative priors for Bayesian classification and regression trees. In: Proc. 19th International Joint Conference on AI (IJCAI-05), Edinburgh, August 2005.
  • 8
    • 70350010012 scopus 로고    scopus 로고
    • Angelopoulos, N., Cussens, J.: MCMCMS 0.3.4 User Guide. University of York (2005)
    • Angelopoulos, N., Cussens, J.: MCMCMS 0.3.4 User Guide. University of York (2005).
  • 9
    • 31844456637 scopus 로고    scopus 로고
    • Angelopoulos, N., Cussens, J.: Tempering for Bayesian C&RT. In: Proceedings of the 22nd International Conference on Machine Learning (ICML05), Bonn, 7-11 August 2005
    • Angelopoulos, N., Cussens, J.: Tempering for Bayesian C&RT. In: Proceedings of the 22nd International Conference on Machine Learning (ICML05), Bonn, 7-11 August 2005.
  • 10
    • 70350029445 scopus 로고    scopus 로고
    • Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The alarm monitoring system: a case study with two probabilistic inference techniques for belief networks. In: Proceedings of the European Conference on Artificial Intelligence in Medicine, pp. 247-256, London, 29-31 August 1989
    • Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The alarm monitoring system: a case study with two probabilistic inference techniques for belief networks. In: Proceedings of the European Conference on Artificial Intelligence in Medicine, pp. 247-256, London, 29-31 August 1989.
  • 11
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Mach. Learn. 29, 213-244 (1997).
    • (1997) Mach. Learn. , vol.29 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 12
    • 4544365481 scopus 로고    scopus 로고
    • Deal: A package for learning Bayesian networks
    • Bøttcher, S.G., Dethlefsen, C.: Deal: a package for learning Bayesian networks. J. Stat. Softw. 8(20), 1-40 (2003).
    • (2003) J. Stat. Softw. , vol.8 , Issue.20 , pp. 1-40
    • Bøttcher, S.G.1    Dethlefsen, C.2
  • 13
    • 70350015218 scopus 로고    scopus 로고
    • Buntine, W.L.: Theory refinement of Bayesian networks. In: D'Ambrosio, B., Smets, P., Bonissone, P. (eds.) Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-1991), pp. 52-60, San Mateo, 13-15 July 1991
    • Buntine, W.L.: Theory refinement of Bayesian networks. In: D'Ambrosio, B., Smets, P., Bonissone, P. (eds.) Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-1991), pp. 52-60, San Mateo, 13-15 July 1991.
  • 15
    • 2542465947 scopus 로고    scopus 로고
    • On inclusion-driven learning of Bayesian networks
    • Castelo, R., Kočka, T.: On inclusion-driven learning of Bayesian networks. J. Mach. Learn. Res. 4, 527-574 (2003).
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 527-574
    • Castelo, R.1    Kočka, T.2
  • 16
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Appeared as 1991 Technical Report KSL-91-02 for the Knowledge Systems Laboratory, Stanford University (also SMI-91-0355)
    • Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309-347 (1992). Appeared as 1991 Technical Report KSL-91-02 for the Knowledge Systems Laboratory, Stanford University (also SMI-91-0355).
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 17
    • 2342490300 scopus 로고    scopus 로고
    • Stochastic logic programs: Sampling, inference and applications
    • San Francisco: Morgan Kaufmann
    • Cussens, J.: Stochastic logic programs: sampling, inference and applications. In: Proc. UAI-00, pp. 115-122. Morgan Kaufmann, San Francisco (2000).
    • (2000) Proc. UAI-00, pp. 115-122
    • Cussens, J.1
  • 18
    • 0035451897 scopus 로고    scopus 로고
    • Parameter estimation in stochastic logic programs
    • Cussens, J.: Parameter estimation in stochastic logic programs. Mach. Learn. 44(3), 245-271 (2001).
    • (2001) Mach. Learn. , vol.44 , Issue.3 , pp. 245-271
    • Cussens, J.1
  • 19
    • 15944399178 scopus 로고    scopus 로고
    • Sparse graphical models for exploring gene expression data
    • Dobra, A., Jones B., Hans, C., Nevins J., West, M.: Sparse graphical models for exploring gene expression data. J. Multivar. Anal. 90, 196-212 (2004).
    • (2004) J. Multivar. Anal. , vol.90 , pp. 196-212
    • Dobra, A.1    Jones, B.2    Hans, C.3    Nevins, J.4    West, M.5
  • 20
    • 0034621283 scopus 로고    scopus 로고
    • Beyond traditional paternity and identification cases. Selecting the most probable pedigree
    • Egeland, T., Mostad, P., Mevåg, B., Stenersen, M.: Beyond traditional paternity and identification cases. Selecting the most probable pedigree. Forensic Sci. Int. 110(1), 47-59 (2000).
    • (2000) Forensic Sci. Int. , vol.110 , Issue.1 , pp. 47-59
    • Egeland, T.1    Mostad, P.2    Mevåg, B.3    Stenersen, M.4
  • 22
    • 70350035834 scopus 로고    scopus 로고
    • Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1879)
    • Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens (1879).
  • 23
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Friedman, N., Koller, D.: Being Bayesian about network structure: a Bayesian approach to structure discovery in Bayesian networks. Mach. Learn. 50, 95-126 (2003).
    • (2003) Mach. Learn. , vol.50 , pp. 95-126
    • Friedman, N.1    Koller, D.2
  • 24
    • 2942628165 scopus 로고    scopus 로고
    • Parameterization and Bayesian modeling
    • Gelman, A.: Parameterization and Bayesian modeling. J. Am. Stat. Assoc. 99(466), 537-545 (2004).
    • (2004) J. Am. Stat. Assoc. , vol.99 , Issue.466 , pp. 537-545
    • Gelman, A.1
  • 25
    • 0003860037 scopus 로고    scopus 로고
    • W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Eds.), London: Chapman & Hall
    • Gilks, W.R., Richardson, S., Spiegelhalter, D.J., (eds.).: Markov Chain Monte Carlo in Practice. Chapman & Hall, London (1996).
    • (1996) Markov Chain Monte Carlo in Practice
  • 26
    • 0003541456 scopus 로고    scopus 로고
    • London Mathematical Society Student Texts52, Cambridge: Cambridge University Press
    • Häggström, O.: Finite Markov Chains and Algorithmic Applications. London Mathematical Society Student Texts, vol. 52. Cambridge University Press, Cambridge (2002).
    • (2002) Finite Markov Chains and Algorithmic Applications
    • Häggström, O.1
  • 27
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Also appears as Technical Report MSR-TR-94-09, Microsoft Research, March, 1994 (revised December, 1994)
    • Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20, 197-243 (1995). Also appears as Technical Report MSR-TR-94-09, Microsoft Research, March, 1994 (revised December, 1994).
    • (1995) Mach. Learn. , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 29
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197-243 (1995).
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 30
    • 0000857850 scopus 로고
    • BIFROST-block recursive models induced from relevant knowledge, observations, and statistical techniques
    • Højsgaard, S., Thiesson, B.: BIFROST-block recursive models induced from relevant knowledge, observations, and statistical techniques. Comput. Stat. Data Anal. 19, 155-175 (1995).
    • (1995) Comput. Stat. Data Anal. , vol.19 , pp. 155-175
    • Højsgaard, S.1    Thiesson, B.2
  • 32
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5, 549-573 (2004).
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 33
    • 2342533144 scopus 로고    scopus 로고
    • Fusion of domain knowledge with data for structural learning in object oriented domains
    • Langseth, H., Nielsen, T.D.: Fusion of domain knowledge with data for structural learning in object oriented domains. J. Mach. Learn. Res. 4, 339-368 (2003).
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 339-368
    • Langseth, H.1    Nielsen, T.D.2
  • 34
    • 0037266164 scopus 로고    scopus 로고
    • Population Markov chain Monte Carlo
    • Laskey, K.B., Myers, J.W.: Population Markov chain Monte Carlo. Mach. Learn. 50, 175-196 (2003).
    • (2003) Mach. Learn. , vol.50 , pp. 175-196
    • Laskey, K.B.1    Myers, J.W.2
  • 35
    • 0036420729 scopus 로고    scopus 로고
    • Chain graph models and their causal interpretations
    • Lauritzen, S.L., Richardson, T.S.: Chain graph models and their causal interpretations. J. R. Stat. Soc. B 64(3), 321-361 (2002).
    • (2002) J. R. Stat. Soc. B , vol.64 , Issue.3 , pp. 321-361
    • Lauritzen, S.L.1    Richardson, T.S.2
  • 36
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their applications to expert systems
    • Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their applications to expert systems. J. R. Stat. Soc. A 50(2), 157-224 (1988).
    • (1988) J. R. Stat. Soc. A , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 37
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan, D., York, J.: Bayesian graphical models for discrete data. Int. Stat. Rev. 63, 215-232 (1995).
    • (1995) Int. Stat. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 38
    • 84950179515 scopus 로고
    • Eliciting prior information to enhance the predictive performance of Bayesian graphical models
    • Appeared as 1994 Technical Report 270, University of Washington
    • Madigan, D., Gavrin, J., Raftery, A.E.: Eliciting prior information to enhance the predictive performance of Bayesian graphical models. Commun. Stat. Theory Methods 24, 2271-2292 (1995). Appeared as 1994 Technical Report 270, University of Washington.
    • (1995) Commun. Stat. Theory Methods , vol.24 , pp. 2271-2292
    • Madigan, D.1    Gavrin, J.2    Raftery, A.E.3
  • 39
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam's window
    • First version was 1991 Technical Report 213, University of Washington
    • Madigan, D., Raftery, A.E.: Model selection and accounting for model uncertainty in graphical models using Occam's window. J. Am. Stat. Assoc. 89, 1535-1546 (1994). First version was 1991 Technical Report 213, University of Washington.
    • (1994) J. Am. Stat. Assoc. , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 40
    • 0002205343 scopus 로고    scopus 로고
    • Stochastic logic programs
    • Frontiers in Artificial Intelligence and Applications32, L. RaedtDe (Ed.), Amsterdam: IOS
    • Muggleton, S.: Stochastic logic programs. In: De Raedt, L. (ed.) Advances in Inductive Logic Programming. Frontiers in Artificial Intelligence and Applications, vol. 32, pp. 254-264. IOS, Amsterdam (1996).
    • (1996) Advances in Inductive Logic Programming , pp. 254-264
    • Muggleton, S.1
  • 44
    • 4444281941 scopus 로고    scopus 로고
    • Parameter learning of logic programs for symbolic-statistical modeling
    • Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical modeling. J. Artif. Intell. Res. 15, 391-454 (2001).
    • (2001) J. Artif. Intell. Res. , vol.15 , pp. 391-454
    • Sato, T.1    Kameya, Y.2
  • 46
    • 70350031443 scopus 로고    scopus 로고
    • Graphical models for mapping continuous traits
    • P. J. Green, N. L. Hjort, and S. Richardson (Eds.), Oxford: Oxford University Press
    • Sheehan, N., Sorensen, D.: Graphical models for mapping continuous traits. In: Green, P.J., Hjort, N.L., Richardson, S. (eds.) Highly Structured Stochastic Systems, pp. 382-386. Oxford University Press, Oxford (2003).
    • (2003) Highly Structured Stochastic Systems , pp. 382-386
    • Sheehan, N.1    Sorensen, D.2
  • 47
    • 85012680398 scopus 로고
    • Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information
    • M. Henrion, R. Schachter, L. Kanal, and J. Flemmer (Eds.), New York: Elsevier Science
    • Srinivas, S., Russell, S., Agogino, A.M.: Automated construction of sparse Bayesian networks from unstructured probabilistic models and domain information. In: Henrion, M., Schachter, R., Kanal, L., Flemmer, J. (eds.) Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference (UAI-1989), pp. 295-308. Elsevier Science, New York (1990).
    • (1990) Uncertainty in Artificial Intelligence: Proceedings of the Fifth Conference (UAI-1989) , pp. 295-308
    • Srinivas, S.1    Russell, S.2    Agogino, A.M.3
  • 48
    • 0242691208 scopus 로고    scopus 로고
    • A comparison of Bayesian methods for haplotype reconstruction from population genotype data
    • Stephens, M., Donelly, P.: A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162-1169 (2003).
    • (2003) Am. J. Hum. Genet. , vol.73 , pp. 1162-1169
    • Stephens, M.1    Donelly, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.