메뉴 건너뛰기




Volumn 4, Issue 3, 2004, Pages 339-368

Fusion of domain knowledge with data for structural learning in object oriented domains

Author keywords

Bayesian networks; Knowledge fusion; Object orientation; Structural learning

Indexed keywords

ALGORITHMS; DATABASE SYSTEMS; INFORMATION ANALYSIS; LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; OBJECT ORIENTED PROGRAMMING;

EID: 2342533144     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244304773633852     Document Type: Article
Times cited : (35)

References (60)
  • 2
    • 0042614839 scopus 로고    scopus 로고
    • Object oriented Bayesian networks. A framework for topdown specification of large Bayesian networks with repetitive structures
    • Department of Computer Science, Aalborg University
    • Olav Bangsø and Pierre-Henri Wuillemin. Object oriented Bayesian networks. A framework for topdown specification of large Bayesian networks with repetitive structures. Technical report CIT-87.2-00-obphwl, Department of Computer Science, Aalborg University, 2000a.
    • (2000) Technical Report , vol.CIT-87.2-00-OBPHWL
    • Bangsø, O.1    Wuillemin, P.-H.2
  • 4
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic networks with hidden variables. Machine Learning, 29(2-3):213-244, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 5
    • 0030124955 scopus 로고    scopus 로고
    • A guide to the literature on learning probabilistic networks from data
    • Wray L. Buntine. A guide to the literature on learning probabilistic networks from data. IEEE Transactions on Knowledge and Data Engineering, 8:195-210, 1996.
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , pp. 195-210
    • Buntine, W.L.1
  • 6
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors. AAAI/MIT Press, 1996. ISBN 0-262-56097-6
    • Peter Cheeseman and John Stutz. Bayesian classification (AutoClass): Theory and results. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors, Advances in knowledge discovery and data mining, pages 153-180. AAAI/MIT Press, 1996. ISBN 0-262-56097-6.
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 7
    • 0031272327 scopus 로고    scopus 로고
    • Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables
    • David M. Chichering and David Heckerman. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables. Machine Learning, 29(2-3):181-212, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 181-212
    • Chichering, D.M.1    Heckerman, D.2
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Gregory F. Cooper and Edward Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 12
    • 0031269467 scopus 로고    scopus 로고
    • The sample complexity of learning fixed-structure Bayesian networks
    • Sanjoy Dasgupta. The sample complexity of learning fixed-structure Bayesian networks. Machine Learning, 29(2-3):165-180, 1997.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 165-180
    • Dasgupta, S.1
  • 21
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • Nir Friedman and Daphne Koller. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50(1-2):99-125, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 99-125
    • Friedman, N.1    Koller, D.2
  • 25
    • 0041779094 scopus 로고    scopus 로고
    • Learning probabilistic relational models
    • Saso Dzeroski and Nada Lavrac, editors. Springer Verlag, Berlin, Germany. ISBN 3-540-42289-7. See also (Friedman et al., 1999)
    • Lise Getoor, Nir Friedman, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models. In Saso Dzeroski and Nada Lavrac, editors, Relational Data Mining, pages 307-338. Springer Verlag, Berlin, Germany, 2001. ISBN 3-540-42289-7. See also (Friedman et al., 1999).
    • (2001) Relational Data Mining , pp. 307-338
    • Getoor, L.1    Friedman, N.2    Koller, D.3    Pfeffer, A.4
  • 26
    • 0000357775 scopus 로고
    • On use of the EM algorithm for penalized likelihood estimation
    • Peter J. Green. On use of the EM algorithm for penalized likelihood estimation. Journal of the Royal Statistical Society, Series B, 52(3):443-452, 1990.
    • (1990) Journal of the Royal Statistical Society, Series B , vol.52 , Issue.3 , pp. 443-452
    • Green, P.J.1
  • 28
    • 0041486577 scopus 로고
    • A Bayesian approach to learning causal networks
    • Microsoft Research
    • David Heckerman. A Bayesian approach to learning causal networks. Technical Report MSR-TR-95-04, Microsoft Research, 1995a.
    • (1995) Technical Report , vol.MSR-TR-95-04
    • Heckerman, D.1
  • 29
    • 0003846041 scopus 로고
    • A tutorial on learning with Bayesian networks
    • Microsoft Research
    • David Heckerman. A tutorial on learning with Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research, 1995b.
    • (1995) Technical Report , vol.MSR-TR-95-06
    • Heckerman, D.1
  • 30
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3): 197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 31
    • 0030343462 scopus 로고    scopus 로고
    • Distinguishing "Missing at Random" and "Missing Completely At Random"
    • Daniel F. Heitjan and Srabashi Basu. Distinguishing "Missing At Random" and "Missing Completely At Random". The American Statistician, 50(3):207-213, 1996.
    • (1996) The American Statistician , vol.50 , Issue.3 , pp. 207-213
    • Heitjan, D.F.1    Basu, S.2
  • 36
    • 0032273105 scopus 로고    scopus 로고
    • Learning probabilistic networks
    • Paul J. Krause. Learning probabilistic networks. The Knowledge Engineering Review, 13(4):321-351, 1998.
    • (1998) The Knowledge Engineering Review , vol.13 , Issue.4 , pp. 321-351
    • Krause, P.J.1
  • 38
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Wai Lam and Fahiem Bacchus. Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10(4):269-293, 1994.
    • (1994) Computational Intelligence , vol.10 , Issue.4 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 48
  • 50
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • Frank Harary, editor. Academic Press, New York
    • Robert W. Robinson. Counting labeled acyclic digraphs. In Frank Harary, editor, New directions in the theory of graphs, pages 239-273. Academic Press, New York, 1973.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 51
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Gideon Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461-464, 1978.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 52
    • 0003260456 scopus 로고
    • Density estimation for statistics and data analysis
    • Chapman and Hall, London, UK. ISBN 0-412-24620-1
    • Bernard W. Silverman. Density Estimation for Statistics and Data Analysis. Monographs on statistics and applied probability. Chapman and Hall, London, UK, 1986. ISBN 0-412-24620-1.
    • (1986) Monographs on Statistics and Applied Probability
    • Silverman, B.W.1
  • 59
    • 0037810162 scopus 로고    scopus 로고
    • Inference in multiply sectioned bayesian networks with extended Shafer-Shenoy and lazy propagation
    • Morgan Kaufmann Publishers
    • Yang Xiang and Finn V. Jensen. Inference in multiply sectioned Bayesian networks with extended Shafer-Shenoy and lazy propagation. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 680-687. Morgan Kaufmann Publishers, 1999.
    • (1999) Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence , pp. 680-687
    • Xiang, Y.1    Jensen, F.V.2
  • 60
    • 84990616603 scopus 로고
    • Multiply sectioned Bayesian networks and junction forests for large knowledge-based systems
    • Yang Xiang, David Poole, and Michael P. Beddoes. Multiply sectioned Bayesian networks and junction forests for large knowledge-based systems. Computational Intelligence, 9(2): 171-220, 1993.
    • (1993) Computational Intelligence , vol.9 , Issue.2 , pp. 171-220
    • Xiang, Y.1    Poole, D.2    Beddoes, M.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.