메뉴 건너뛰기




Volumn 179, Issue 24, 2009, Pages 4097-4122

Troika - An improved stacking schema for classification tasks

Author keywords

Ensemble of classifiers; Machine learning; Meta combination; Stacked generalization

Indexed keywords

BASE CLASSIFIERS; CLASSIFICATION TASKS; COMBINING CLASSIFIERS; DATA SETS; ENSEMBLE CLASSIFIERS; ENSEMBLE OF CLASSIFIERS; GENERAL ENSEMBLE METHOD; MACHINE LEARNING; META COMBINATION; META-CLASSIFIERS; META-LEARNING APPROACH; MULTI-CLASS PROBLEMS; STACKED GENERALIZATION; STACKING METHOD; THREE-LAYER;

EID: 70349750474     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2009.08.025     Document Type: Article
Times cited : (80)

References (33)
  • 1
    • 0029183827 scopus 로고
    • Efficient classification for multiclass problems using modular neural networks
    • Anand R., Methrotra K., Mohan C.K., and Ranka S. Efficient classification for multiclass problems using modular neural networks. IEEE Transaction on Neural Networks 6 1 (1995) 117-125
    • (1995) IEEE Transaction on Neural Networks , vol.6 , Issue.1 , pp. 117-125
    • Anand, R.1    Methrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 2
    • 60349123276 scopus 로고    scopus 로고
    • Incremental construction of classifier and discriminant ensembles
    • Aydi{dotless}n U., Murat S., Yi{dotless}ldi{dotless}z O.T., and Ethem A. Incremental construction of classifier and discriminant ensembles. Information Science 179 9 (2009) 1298-1318
    • (2009) Information Science , vol.179 , Issue.9 , pp. 1298-1318
    • Aydin, U.1    Murat, S.2    Yildiz, O.T.3    Ethem, A.4
  • 3
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Pittsburgh, PA
    • B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Fifth Annual ACM, ACM Press, Pittsburgh, PA, 1992, pp. 144-152.
    • (1992) Fifth Annual ACM, ACM Press , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 4
    • 0003637516 scopus 로고
    • Doctoral dissertation, School of Computing Science, University of Technology, Sydney
    • W. Buntine, A theory of learning classification rules, Doctoral dissertation, School of Computing Science, University of Technology, Sydney, 1990.
    • (1990) A theory of learning classification rules
    • Buntine, W.1
  • 5
    • 34249076322 scopus 로고    scopus 로고
    • A theory of actionable data mining with application to semiconductor manufacturing control
    • Braha D., Elovici Y., and Last M. A theory of actionable data mining with application to semiconductor manufacturing control. International Journal of Production Research 45 13 (2007) 3059-3084
    • (2007) International Journal of Production Research , vol.45 , Issue.13 , pp. 3059-3084
    • Braha, D.1    Elovici, Y.2    Last, M.3
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning (1996) 123-140
    • (1996) Machine Learning , pp. 123-140
    • Breiman, L.1
  • 7
    • 85015191605 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • Session on Learning
    • P. Clark, R. Boswell, Rule induction with CN2: some recent improvements, in: Proceedings of the European Working Session on Learning, 1991, pp. 151-163.
    • (1991) Proceedings of the European Working , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 8
    • 34250314887 scopus 로고    scopus 로고
    • Decision tree instance space decomposition with grouped gain-ratio
    • Cohen S., Rokach L., and Maimon O. Decision tree instance space decomposition with grouped gain-ratio. Information Science 177 17 (2007) 3592-3612
    • (2007) Information Science , vol.177 , Issue.17 , pp. 3592-3612
    • Cohen, S.1    Rokach, L.2    Maimon, O.3
  • 9
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 11
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 3 (2004) 255-273
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 12
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 (2001) 203-231
    • (2001) Machine Learning , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 13
    • 84945261092 scopus 로고    scopus 로고
    • Pairwise classification as an ensemble technique
    • Austrian Research Institute for Artificial Intelligence, Helsinki, Finland
    • J. Fürnkranz, Pairwise classification as an ensemble technique, in: European Conference on Machine Learning, Austrian Research Institute for Artificial Intelligence, Helsinki, Finland, 2002, pp. 97-110.
    • (2002) European Conference on Machine Learning , pp. 97-110
    • Fürnkranz, J.1
  • 14
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • Peter Zhang G. A neural network ensemble method with jittered training data for time series forecasting. Information Sciences: An International Journal 177 23 (2007) 5329-5346
    • (2007) Information Sciences: An International Journal , vol.177 , Issue.23 , pp. 5329-5346
    • Peter Zhang, G.1
  • 17
    • 0032594843 scopus 로고    scopus 로고
    • Task decomposition and module combination based on class relations: a modular neural network for pattern classification
    • Lu B.L., and Ito M. Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Transactions on Neural Networks 10 5 (1999) 1244-1256
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1244-1256
    • Lu, B.L.1    Ito, M.2
  • 19
  • 20
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C. Using correspondence analysis to combine classifiers. Machine Learning 36 (1999) 33-58
    • (1999) Machine Learning , vol.36 , pp. 33-58
    • Merz, C.1
  • 21
    • 8344282137 scopus 로고
    • C4.5: programs for machine learning
    • Quinlan R. C4.5: programs for machine learning. Machine Learning (1993) 235-240
    • (1993) Machine Learning , pp. 235-240
    • Quinlan, R.1
  • 22
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • Rokach L. Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics and Data Analysis 53 12 (2009) 4046-4072
    • (2009) Computational Statistics and Data Analysis , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 25
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • Morgan Kaufmann Publishers, Sydney
    • A. Seewald, How to make stacking better and faster while also taking care of an unknown weakness, in: Nineteenth International Conference on Machine Learning, Morgan Kaufmann Publishers, Sydney, 2002, pp. 554-561.
    • (2002) Nineteenth International Conference on Machine Learning , pp. 554-561
    • Seewald, A.1
  • 30
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 32
    • 34548126507 scopus 로고    scopus 로고
    • Data-driven decomposition for multi-class classification
    • Zhoua J., Pengb H., and Suenc C. Data-driven decomposition for multi-class classification. Pattern Recognition 41 (2008) 67-76
    • (2008) Pattern Recognition , vol.41 , pp. 67-76
    • Zhoua, J.1    Pengb, H.2    Suenc, C.3
  • 33
    • 0038154329 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • G. Zenobi, P. Cunningham, Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error, in: Proceedings of the European Conference on Machine Learning, 2001.
    • (2001) Proceedings of the European Conference on Machine Learning
    • Zenobi, G.1    Cunningham, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.