-
1
-
-
0029183827
-
Efficient classification for multiclass problems using modular neural networks
-
Anand R., Methrotra K., Mohan C.K., and Ranka S. Efficient classification for multiclass problems using modular neural networks. IEEE Transaction on Neural Networks 6 1 (1995) 117-125
-
(1995)
IEEE Transaction on Neural Networks
, vol.6
, Issue.1
, pp. 117-125
-
-
Anand, R.1
Methrotra, K.2
Mohan, C.K.3
Ranka, S.4
-
2
-
-
60349123276
-
Incremental construction of classifier and discriminant ensembles
-
Aydi{dotless}n U., Murat S., Yi{dotless}ldi{dotless}z O.T., and Ethem A. Incremental construction of classifier and discriminant ensembles. Information Science 179 9 (2009) 1298-1318
-
(2009)
Information Science
, vol.179
, Issue.9
, pp. 1298-1318
-
-
Aydin, U.1
Murat, S.2
Yildiz, O.T.3
Ethem, A.4
-
3
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA
-
B.E. Boser, I.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Fifth Annual ACM, ACM Press, Pittsburgh, PA, 1992, pp. 144-152.
-
(1992)
Fifth Annual ACM, ACM Press
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
4
-
-
0003637516
-
-
Doctoral dissertation, School of Computing Science, University of Technology, Sydney
-
W. Buntine, A theory of learning classification rules, Doctoral dissertation, School of Computing Science, University of Technology, Sydney, 1990.
-
(1990)
A theory of learning classification rules
-
-
Buntine, W.1
-
5
-
-
34249076322
-
A theory of actionable data mining with application to semiconductor manufacturing control
-
Braha D., Elovici Y., and Last M. A theory of actionable data mining with application to semiconductor manufacturing control. International Journal of Production Research 45 13 (2007) 3059-3084
-
(2007)
International Journal of Production Research
, vol.45
, Issue.13
, pp. 3059-3084
-
-
Braha, D.1
Elovici, Y.2
Last, M.3
-
6
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Machine Learning (1996) 123-140
-
(1996)
Machine Learning
, pp. 123-140
-
-
Breiman, L.1
-
7
-
-
85015191605
-
Rule induction with CN2: Some recent improvements
-
Session on Learning
-
P. Clark, R. Boswell, Rule induction with CN2: some recent improvements, in: Proceedings of the European Working Session on Learning, 1991, pp. 151-163.
-
(1991)
Proceedings of the European Working
, pp. 151-163
-
-
Clark, P.1
Boswell, R.2
-
8
-
-
34250314887
-
Decision tree instance space decomposition with grouped gain-ratio
-
Cohen S., Rokach L., and Maimon O. Decision tree instance space decomposition with grouped gain-ratio. Information Science 177 17 (2007) 3592-3612
-
(2007)
Information Science
, vol.177
, Issue.17
, pp. 3592-3612
-
-
Cohen, S.1
Rokach, L.2
Maimon, O.3
-
9
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
11
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 3 (2004) 255-273
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
12
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F., and Fawcett T. Robust classification for imprecise environments. Machine Learning 42 (2001) 203-231
-
(2001)
Machine Learning
, vol.42
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
13
-
-
84945261092
-
Pairwise classification as an ensemble technique
-
Austrian Research Institute for Artificial Intelligence, Helsinki, Finland
-
J. Fürnkranz, Pairwise classification as an ensemble technique, in: European Conference on Machine Learning, Austrian Research Institute for Artificial Intelligence, Helsinki, Finland, 2002, pp. 97-110.
-
(2002)
European Conference on Machine Learning
, pp. 97-110
-
-
Fürnkranz, J.1
-
14
-
-
34548619946
-
A neural network ensemble method with jittered training data for time series forecasting
-
Peter Zhang G. A neural network ensemble method with jittered training data for time series forecasting. Information Sciences: An International Journal 177 23 (2007) 5329-5346
-
(2007)
Information Sciences: An International Journal
, vol.177
, Issue.23
, pp. 5329-5346
-
-
Peter Zhang, G.1
-
17
-
-
0032594843
-
Task decomposition and module combination based on class relations: a modular neural network for pattern classification
-
Lu B.L., and Ito M. Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Transactions on Neural Networks 10 5 (1999) 1244-1256
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1244-1256
-
-
Lu, B.L.1
Ito, M.2
-
18
-
-
58549090885
-
Improving malware detection by applying multi-inducer ensemble
-
Menahem E., Shabtai A., Rokach L., and Elovici Y. Improving malware detection by applying multi-inducer ensemble. Computational Statistics & Data Analysis 53 4 (2009) 1483-1494
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, Issue.4
, pp. 1483-1494
-
-
Menahem, E.1
Shabtai, A.2
Rokach, L.3
Elovici, Y.4
-
19
-
-
0003408496
-
-
University of California, Department of Information and Computer Science, Irvine, CA
-
C.J. Merz, P.M. Murphy, UCI repository of machine learning databases, University of California, Department of Information and Computer Science, Irvine, CA, 1998.
-
(1998)
UCI repository of machine learning databases
-
-
Merz, C.J.1
Murphy, P.M.2
-
20
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Merz C. Using correspondence analysis to combine classifiers. Machine Learning 36 (1999) 33-58
-
(1999)
Machine Learning
, vol.36
, pp. 33-58
-
-
Merz, C.1
-
21
-
-
8344282137
-
C4.5: programs for machine learning
-
Quinlan R. C4.5: programs for machine learning. Machine Learning (1993) 235-240
-
(1993)
Machine Learning
, pp. 235-240
-
-
Quinlan, R.1
-
22
-
-
69449097857
-
Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
-
Rokach L. Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Computational Statistics and Data Analysis 53 12 (2009) 4046-4072
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, Issue.12
, pp. 4046-4072
-
-
Rokach, L.1
-
23
-
-
84958554285
-
An evaluation of grading classifiers
-
Springer, Berlin/Heidelberg/New York/Tokyo
-
A.K. Seewald, J. Fuernkranz, An evaluation of grading classifiers, in: Advances in Intelligent Data Analysis: Fourth International Conference, Springer, Berlin/Heidelberg/New York/Tokyo, 2001, pp. 115-124.
-
(2001)
Advances in Intelligent Data Analysis: Fourth International Conference
, pp. 115-124
-
-
Seewald, A.K.1
Fuernkranz, J.2
-
25
-
-
8444229122
-
How to make stacking better and faster while also taking care of an unknown weakness
-
Morgan Kaufmann Publishers, Sydney
-
A. Seewald, How to make stacking better and faster while also taking care of an unknown weakness, in: Nineteenth International Conference on Machine Learning, Morgan Kaufmann Publishers, Sydney, 2002, pp. 554-561.
-
(2002)
Nineteenth International Conference on Machine Learning
, pp. 554-561
-
-
Seewald, A.1
-
30
-
-
0026692226
-
Stacked generalization
-
Wolpert D. Stacked generalization. Neural Networks 5 (1992) 241-259
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
-
31
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, PA
-
B.E. Boser, l.M. Guyon, V.N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, ACM Press, Pittsburgh, PA, 1992, pp. 144-152.
-
(1992)
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, ACM Press
, pp. 144-152
-
-
Boser, B.E.1
Guyon, L.M.2
Vapnik, V.N.3
-
32
-
-
34548126507
-
Data-driven decomposition for multi-class classification
-
Zhoua J., Pengb H., and Suenc C. Data-driven decomposition for multi-class classification. Pattern Recognition 41 (2008) 67-76
-
(2008)
Pattern Recognition
, vol.41
, pp. 67-76
-
-
Zhoua, J.1
Pengb, H.2
Suenc, C.3
-
33
-
-
0038154329
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
G. Zenobi, P. Cunningham, Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error, in: Proceedings of the European Conference on Machine Learning, 2001.
-
(2001)
Proceedings of the European Conference on Machine Learning
-
-
Zenobi, G.1
Cunningham, P.2
|