-
2
-
-
0000048258
-
-
Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford
-
(a) Oppolzer, W. In Comprenhensive Organic Synthesis, Vol.5; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon: Oxford, 1991; pp 315-399.
-
(1991)
Comprenhensive Organic Synthesis
, vol.5
, pp. 315-399
-
-
Oppolzer, W.1
-
3
-
-
0036259981
-
-
For reviews on applications of Diels-Alder reactions in total synthesis, see: (b)
-
For reviews on applications of Diels-Alder reactions in total synthesis, see: (b) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668-1698.
-
(2002)
Angew. Chem., Int. Ed.
, vol.41
, pp. 1668-1698
-
-
Nicolaou, K.C.1
Snyder, S.A.2
Montagnon, T.3
Vassilikogiannakis, G.4
-
4
-
-
30744456747
-
-
(c) Takao, K.; Munakata, R.; Tadano, K. Chem. Rev. 2005, 105, 4779-4807.
-
(2005)
Chem. Rev.
, vol.105
, pp. 4779-4807
-
-
Takao, K.1
Munakata, R.2
Tadano, K.3
-
5
-
-
33845185652
-
-
For representative examples with 1,3-diene-ynes, see: (a)
-
For representative examples with 1,3-diene-ynes, see: (a) Wender, P. A.; Jenkins, T. E. J. Am. Chem. Soc. 1989, 111, 6432-6434.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 6432-6434
-
-
Wender, P.A.1
Jenkins, T.E.2
-
6
-
-
0001230097
-
-
(b) Jolly, R. S.; Luedtke, G.; Sheehan, D.; Livinghouse, T. J. Am. Chem. Soc. 1990, 112, 4965-4966.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 4965-4966
-
-
Jolly, R.S.1
Luedtke, G.2
Sheehan, D.3
Livinghouse, T.4
-
11
-
-
3142699863
-
-
(g) Motoda, D.; Kinoshita, H.; Shinokubo, H.; Oshima, K. Angew. Chem., Int. Ed. 2004, 43, 1860-1862.
-
(2004)
Angew. Chem., Int. Ed.
, vol.43
, pp. 1860-1862
-
-
Motoda, D.1
Kinoshita, H.2
Shinokubo, H.3
Oshima, K.4
-
12
-
-
0010589404
-
-
For intermolecular examples with 1,3-dienes and alkynes, see: (h)
-
For intermolecular examples with 1,3-dienes and alkynes, see: (h) Carbonaro, A.; Greco, A.; Dall'Asta, G. J. Org. Chem. 1968, 33, 3948-3950.
-
(1968)
J. Org. Chem.
, vol.33
, pp. 3948-3950
-
-
Carbonaro, A.1
Greco, A.2
Dall'Asta, G.3
-
13
-
-
84940643310
-
-
(i) tom Dieck, H.; Diercks, R. Angew. Chem., Int. Ed. Engl. 1983, 22, 778-779.
-
(1983)
Angew. Chem., Int. Ed. Engl.
, vol.22
, pp. 778-779
-
-
Tom Dieck, H.1
Diercks, R.2
-
14
-
-
0000257154
-
-
(j) Paik, S.-J.; Son, S. U.; Chung, Y. K. Org. Lett. 1999, 1, 2045-2047.
-
(1999)
Org. Lett.
, vol.1
, pp. 2045-2047
-
-
Paik, S.-J.1
Son, S.U.2
Chung, Y.K.3
-
15
-
-
33746910189
-
-
(k) Hilt, G.; Hess, W.; Harms, K. Org. Lett. 2006, 8, 3287-3290.
-
(2006)
Org. Lett.
, vol.8
, pp. 3287-3290
-
-
Hilt, G.1
Hess, W.2
Harms, K.3
-
16
-
-
0031708442
-
-
For a related cycloaddition between unactivated vinylallenes and alkynes, see: (l)
-
For a related cycloaddition between unactivated vinylallenes and alkynes, see: (l) Murakami, M.; Ubukata, M.; Itami, K.; Ito, Y. Angew. Chem., Int. Ed. 1998, 37, 2248-2250.
-
(1998)
Angew. Chem., Int. Ed.
, vol.37
, pp. 2248-2250
-
-
Murakami, M.1
Ubukata, M.2
Itami, K.3
Ito, Y.4
-
17
-
-
0034697670
-
-
For representative examples on Hetero-Diels-Alder reactions, respectively, see: (m)
-
For representative examples on Hetero-Diels-Alder reactions, respectively, see: (m) Trost, B. M.; Brown, R. E.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 5877-5878.
-
(2000)
J. Am. Chem. Soc.
, vol.122
, pp. 5877-5878
-
-
Trost, B.M.1
Brown, R.E.2
Toste, F.D.3
-
18
-
-
63149091762
-
-
(n) Koyama, I.; Kurahashi, T.; Matsubara, S. J. Am. Chem. Soc. 2009, 131, 1350-1351.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 1350-1351
-
-
Koyama, I.1
Kurahashi, T.2
Matsubara, S.3
-
19
-
-
0000551283
-
-
(a) Wender, P. A.; Jenkins, T. E.; Suzuki, S. J. Am. Chem. Soc. 1995, 117, 1843-1844.
-
(1995)
J. Am. Chem. Soc.
, vol.117
, pp. 1843-1844
-
-
Wender, P.A.1
Jenkins, T.E.2
Suzuki, S.3
-
20
-
-
26844518922
-
-
(b) Trost, B. M.; Fandrick, D. R.; Dinh, D. C. J. Am. Chem. Soc. 2005, 127, 14186-14187.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 14186-14187
-
-
Trost, B.M.1
Fandrick, D.R.2
Dinh, D.C.3
-
21
-
-
33746304119
-
-
These type of [4C+2C] cycloadditions were also observed as side-processes in Rh-catalyzed dienyl Pauson-Khand reactions, see: (c)
-
These type of [4C+2C] cycloadditions were also observed as side-processes in Rh-catalyzed dienyl Pauson-Khand reactions, see: (c) Wender, P. A.; Croatt, M. P.; Deschamps, N. M. Angew. Chem., Int. Ed. 2006, 45, 2459-2462.
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 2459-2462
-
-
Wender, P.A.1
Croatt, M.P.2
Deschamps, N.M.3
-
22
-
-
0002408267
-
-
Harmata, M., Ed.; JAI Press: Greenwich
-
(a) Wender, P. A.; Love, J. A. In Advances in Cycloaddition, Vol.5.; Harmata, M., Ed.; JAI Press: Greenwich, 1999; pp 1-45.
-
(1999)
Advances in Cycloaddition
, vol.5
, pp. 1-45
-
-
Wender, P.A.1
Love, J.A.2
-
23
-
-
0002110351
-
-
(b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49-92.
-
(1996)
Chem. Rev.
, vol.96
, pp. 49-92
-
-
Lautens, M.1
Klute, W.2
Tam, W.3
-
24
-
-
0036522941
-
-
(c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813-834.
-
(2002)
Chem. Rev.
, vol.102
, pp. 813-834
-
-
Aubert, C.1
Buisine, O.2
Malacria, M.3
-
25
-
-
46749159211
-
-
For a recent review on Au-catalyzed cycloadditions, see: (a)
-
For a recent review on Au-catalyzed cycloadditions, see: (a) Shen, H. C. Tetrahedron 2008, 64, 7847-7870.
-
(2008)
Tetrahedron
, vol.64
, pp. 7847-7870
-
-
Shen, H.C.1
-
26
-
-
51049121927
-
-
For recent reviews on Au-catalyzed reactions, see: (b)
-
For recent reviews on Au-catalyzed reactions, see: (b) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239-3265.
-
(2008)
Chem. Rev.
, vol.108
, pp. 3239-3265
-
-
Li, Z.1
Brouwer, C.2
He, C.3
-
27
-
-
51249100498
-
-
(c) Arcadi, A. Chem. Rev. 2008, 108, 3266-3325.
-
(2008)
Chem. Rev.
, vol.108
, pp. 3266-3325
-
-
Arcadi, A.1
-
28
-
-
51049105959
-
-
(d) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351-3378.
-
(2008)
Chem. Rev.
, vol.108
, pp. 3351-3378
-
-
Gorin, D.J.1
Sherry, B.D.2
Toste, F.D.3
-
33
-
-
38349080851
-
-
For different types of Au-catalyzed [4C+2C] cycloadditions and annulations, see: (a)
-
For different types of Au-catalyzed [4C+2C] cycloadditions and annulations, see: (a) Nieto-Oberhuber, C.; Pérez-Galán, P.; Herrero-Gómez, E.; Lauterbach, T.; Rodríguez, C.; López, S.; Bour, C.; Rosellón, A.; Cárdenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2008, 130, 269-279.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 269-279
-
-
Nieto-Oberhuber, C.1
Pérez-Galán, P.2
Herrero-Gómez, E.3
Lauterbach, T.4
Rodríguez, C.5
López, S.6
Bour, C.7
Rosellón, A.8
Cárdenas, D.J.9
Echavarren, A.M.10
-
34
-
-
18244399612
-
-
(b) Nieto-Oberhuber, C.; Lopez, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178-6179.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 6178-6179
-
-
Nieto-Oberhuber, C.1
Lopez, S.2
Echavarren, A.M.3
-
35
-
-
18844396734
-
-
(c) Hashmi, A. S. K.; Rudolph, M.; Weyrauch, J. P.; Wölfle, M.; Frey, W.; Bats, J. W. Angew. Chem., Int. Ed. 2005, 44, 2798-2801.
-
(2005)
Angew. Chem., Int. Ed.
, vol.44
, pp. 2798-2801
-
-
Hashmi, A.S.K.1
Rudolph, M.2
Weyrauch, J.P.3
Wölfle, M.4
Frey, W.5
Bats, J.W.6
-
36
-
-
36749027602
-
-
(d) Fürstner, A.; Stimson, C. C. Angew. Chem., Int. Ed. 2007, 46, 8845-8849.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 8845-8849
-
-
Fürstner, A.1
Stimson, C.C.2
-
37
-
-
39049105773
-
-
(e) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814-1815.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 1814-1815
-
-
Zhang, G.1
Huang, X.2
Li, G.3
Zhang, L.4
-
38
-
-
67749084445
-
-
(f) Lemière, G.; Gandon, V.; Cariou, K.; Hours, A.; Fukuyama, T.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2009, 131, 2993-3006.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 2993-3006
-
-
Lemière, G.1
Gandon, V.2
Cariou, K.3
Hours, A.4
Fukuyama, T.5
Dhimane, A.-L.6
Fensterbank, L.7
Malacria, M.8
-
39
-
-
40949147738
-
-
(g) Barluenga, J.; Fernandez-Rodriguez, M. A.; Garcia-Garcia, P.; Aguilar, E. J. Am. Chem. Soc. 2008, 130, 2764-2765.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 2764-2765
-
-
Barluenga, J.1
Fernandez-Rodriguez, M.A.2
Garcia-Garcia, P.3
Aguilar, E.4
-
40
-
-
0037202125
-
-
(h) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650-12651.
-
(2002)
J. Am. Chem. Soc.
, vol.124
, pp. 12650-12651
-
-
Asao, N.1
Takahashi, K.2
Lee, S.3
Kasahara, T.4
Yamamoto, Y.5
-
42
-
-
34250824768
-
-
(b) Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410-3449.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 3410-3449
-
-
Furstner, A.1
Davies, P.W.2
-
43
-
-
70349778993
-
-
For interesting discussions about the precise nature of some of these gold carbene species and their possible consideration as gold-stabilized carbocations, see: (a)
-
For interesting discussions about the precise nature of some of these gold carbene species and their possible consideration as gold-stabilized carbocations, see: (a) Seidel, G.; Mynott, R.; Fürstner, A. Angew. Chem., Int. Ed. 2009, 48, 2510-2513.
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 2510-2513
-
-
Seidel, G.1
Mynott, R.2
Fürstner, A.3
-
44
-
-
53049098944
-
-
(b) Fürstner, A.; Morency, L. Angew. Chem., Int. Ed. 2008, 47, 5030-5033.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 5030-5033
-
-
Fürstner, A.1
Morency, L.2
-
45
-
-
53249152128
-
-
For a highlight, see: (c)
-
For a highlight, see: (c) Hashmi, A. S. K. Angew. Chem., Int. Ed. 2008, 47, 6754-6756.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 6754-6756
-
-
Hashmi, A.S.K.1
-
46
-
-
38549092554
-
-
(a) Trillo, B.; López, F.; Gulías, M.; Castedo, L.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2008, 47, 951-954.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 951-954
-
-
Trillo, B.1
López, F.2
Gulías, M.3
Castedo, L.4
Mascareñas, J.L.5
-
47
-
-
63749113341
-
-
(b) Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós, A.; Mascareñas, J. L. Chem. - Eur. J. 2009, 15, 3336-3339.
-
(2009)
Chem. - Eur. J.
, vol.15
, pp. 3336-3339
-
-
Trillo, B.1
López, F.2
Montserrat, S.3
Ujaque, G.4
Castedo, L.5
Lledós, A.6
Mascareñas, J.L.7
-
48
-
-
69949147971
-
-
After initial submission of the first version of this manuscript, a paper discussing ligand-dependent divergence between [4 + 3] and [4 + 2] pathways was published by Toste et. al. See
-
After initial submission of the first version of this manuscript, a paper discussing ligand-dependent divergence between [4 + 3] and [4 + 2] pathways was published by Toste et. al. See: Mauleón, P.; Zeldin, R. M.; González, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348-6349.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6348-6349
-
-
Mauleón, P.1
Zeldin, R.M.2
González, A.Z.3
Toste, F.D.4
-
49
-
-
70349126549
-
-
note
-
2. See also ref 10.
-
-
-
-
50
-
-
33748792796
-
-
Ar = 2,4-di-tert-butylphenyl; For the pioneering use of this phosphite gold complex, see
-
Ar = 2,4-di-tert-butylphenyl; For the pioneering use of this phosphite gold complex, see: López, S.; Herrero-Gómez, E.; Pérez-Galán, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew 2006, 45, 6029-6032.
-
(2006)
Angew
, vol.45
, pp. 6029-6032
-
-
López, S.1
Herrero-Gómez, E.2
Pérez-Galán, P.3
Nieto-Oberhuber, C.4
Echavarren, A.M.5
-
51
-
-
41149166160
-
-
See also: (b)
-
See also: (b) Gorin, D. J.; Watson, I. D. G.; Toste, F. D. J. Am. Chem. Soc. 2008, 130, 3736.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 3736
-
-
Gorin, D.J.1
Watson, I.D.G.2
Toste, F.D.3
-
52
-
-
70349151619
-
-
See the Supporting Information for more details
-
See the Supporting Information for more details.
-
-
-
-
53
-
-
35349012652
-
-
For related Au-catalyzed [2C+2C] cycloadditions of allene-tethered alkenes (allenenes), see: (a)
-
For related Au-catalyzed [2C+2C] cycloadditions of allene-tethered alkenes (allenenes), see: (a) Luzung, M. R.; Mauleón, P.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 12402-12403.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 12402-12403
-
-
Luzung, M.R.1
Mauleón, P.2
Toste, F.D.3
-
54
-
-
28844458694
-
-
See also: (b)
-
See also: (b) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804-16805.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 16804-16805
-
-
Zhang, L.1
-
55
-
-
70349124430
-
-
note
-
Reaction of 1b at-15°C is almost completed in less than 10 min (> 95% conv.). At this temperature 1k requires 90 min to reach 50% conversion.
-
-
-
-
56
-
-
53849148639
-
-
For a review highlighting the most recent enantioselective developments, see: (a)
-
For a review highlighting the most recent enantioselective developments, see: (a) Widenhoefer, R. A. Chem. - Eur. J. 2008, 14, 5382-5391.
-
(2008)
Chem. - Eur. J.
, vol.14
, pp. 5382-5391
-
-
Widenhoefer, R.A.1
-
57
-
-
53249151254
-
-
See also: (b)
-
See also: (b) Bongers, N.; Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178-2181.
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 2178-2181
-
-
Bongers, N.1
Krause, N.2
-
62
-
-
0001040781
-
-
Ojima, I., Ed.; VCH Publishers: New York
-
(a) Sawamura, M.; Ito, Y. In Catalytic Asymmetric Synthesis; Ojima, I., Ed.; VCH Publishers: New York, 1993; p 367.
-
(1993)
Catalytic Asymmetric Synthesis
, pp. 367
-
-
Sawamura, M.1
Ito, Y.2
-
63
-
-
33845376099
-
-
(b) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405-6406.
-
(1986)
J. Am. Chem. Soc.
, vol.108
, pp. 6405-6406
-
-
Ito, Y.1
Sawamura, M.2
Hayashi, T.3
-
64
-
-
0026561942
-
-
(c) Hayashi, T.; Sawamura, M.; Ito, Y. Tetrahedron 1992, 48, 1999-2012.
-
(1992)
Tetrahedron
, vol.48
, pp. 1999-2012
-
-
Hayashi, T.1
Sawamura, M.2
Ito, Y.3
-
65
-
-
15944427478
-
-
For the first application of bis(gold)complexes in enantioselective catalysis, see: (a)
-
For the first application of bis(gold)complexes in enantioselective catalysis, see: (a) Paz Mun̈oz, M.; Adrio, J.; Carretero, J. C.; Echavarren, A. M. Organometallics 2005, 24, 1293-1300.
-
(2005)
Organometallics
, vol.24
, pp. 1293-1300
-
-
Paz Mun̈oz, M.1
Adrio, J.2
Carretero, J.C.3
Echavarren, A.M.4
-
66
-
-
23044449420
-
-
For other representative examples, see: (b)
-
For other representative examples, see: (b) González-Arellano, C.; Corma, A.; Iglesias, M.; Sanchez, F. Chem. Commun. 2005, 3451-3453.
-
(2005)
Chem. Commun.
, pp. 3451-3453
-
-
González-Arellano, C.1
Corma, A.2
Iglesias, M.3
Sanchez, F.4
-
67
-
-
33846047998
-
-
(c) Zhang, Z.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2007, 46, 283-285.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 283-285
-
-
Zhang, Z.1
Widenhoefer, R.A.2
-
68
-
-
34548606671
-
-
(d) Tarselli, M. A.; Chianese, A. R.; Lee, S. L.; Gagné, M. R. Angew. Chem., Int. Ed. 2007, 46, 6670-6673.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 6670-6673
-
-
Tarselli, M.A.1
Chianese, A.R.2
Lee, S.L.3
Gagné, M.R.4
-
69
-
-
29844455305
-
-
(e) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002-18003.
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 18002-18003
-
-
Johansson, M.J.1
Gorin, D.J.2
Staben, S.T.3
Toste, F.D.4
-
70
-
-
67749086553
-
-
(f) Watson, I. D. G.; Ritter, S.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 2056-2057.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 2056-2057
-
-
Watson, I.D.G.1
Ritter, S.2
Toste, F.D.3
-
71
-
-
70349112091
-
-
See also ref 15a
-
(g) See also ref 15a.
-
-
-
-
72
-
-
0033935279
-
-
For representative reviews on the use of phosphoramidite ligands in other transition metal catalyzed asymmetric processes, see: Cu:(a)
-
For representative reviews on the use of phosphoramidite ligands in other transition metal catalyzed asymmetric processes, see: Cu:(a) Feringa, B. L Acc. Chem. Res. 2000, 33, 346-353.
-
(2000)
Acc. Chem. Res.
, vol.33
, pp. 346-353
-
-
Feringa, B.L.1
-
73
-
-
38049033351
-
-
Rh and Ir: (b)
-
Rh and Ir: (b) Minnaard, A. J.; Feringa, B. L.; Lefort, L.; De Vries, J. G. Acc. Chem. Res. 2007, 40, 1267-1277.
-
(2007)
Acc. Chem. Res.
, vol.40
, pp. 1267-1277
-
-
Minnaard, A.J.1
Feringa, B.L.2
Lefort, L.3
De Vries, J.G.4
-
74
-
-
70349112920
-
-
note
-
A chiral phosphoramidite gold catalyst has been described in ref 20a and evaluated in alkoxycyclization reactions of 1,6-enynes, but provided racemic products (less than 2% ee).
-
-
-
-
75
-
-
0001387894
-
-
Phosphoramidite gold complexes were prepared following procedures similar to those described in: (a)
-
Phosphoramidite gold complexes were prepared following procedures similar to those described in: (a) Alder, M. J.; Flower, K. R.; Pritchard, R. G. J. Organomet. Chem. 2001, 629, 153-159.
-
(2001)
J. Organomet. Chem.
, vol.629
, pp. 153-159
-
-
Alder, M.J.1
Flower, K.R.2
Pritchard, R.G.3
-
76
-
-
70349107076
-
-
See also ref 20a
-
(b) See also ref 20a.
-
-
-
-
77
-
-
34247892462
-
-
The introduction of substituents at the 3 and 3′ positions of the binaphthol or biphenol skeletons of phosphoramidites has been proven successful in other transition metal catalyzed asymmetric processes which make use of these ligands. For representative examples, see: (a)
-
The introduction of substituents at the 3 and 3′ positions of the binaphthol or biphenol skeletons of phosphoramidites has been proven successful in other transition metal catalyzed asymmetric processes which make use of these ligands. For representative examples, see: (a) Giacomina, F.; Meetsma, A.; Panella, L.; Lefort, L.; de Vries, A. H. M.; de Vries, J. G. Angew. Chem., Int. Ed. 2007, 46, 1497-1500.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 1497-1500
-
-
Giacomina, F.1
Meetsma, A.2
Panella, L.3
Lefort, L.4
De Vries, A.H.M.5
De Vries, J.G.6
-
78
-
-
1842681981
-
-
(b) Hua, Z.; Vassar, V. C.; Choi, H.; Ojima, I. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5411-5416.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 5411-5416
-
-
Hua, Z.1
Vassar, V.C.2
Choi, H.3
Ojima, I.4
-
79
-
-
33746303090
-
-
Phosphoramidite ligand precursor of complex (S,R,R)-I has been proven successful in Pd-catalyzed enantioselective hydrogenolysis of arene tricarbonyl chromium(0) complexes, see: (c)
-
Phosphoramidite ligand precursor of complex (S,R,R)-I has been proven successful in Pd-catalyzed enantioselective hydrogenolysis of arene tricarbonyl chromium(0) complexes, see: (c) Kündig, E. P.; Chaudhuri, P. D.; House, D.; Bernardinelli, G. Angew. Chem., Int. Ed. 2006, 45, 1092-1095.
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 1092-1095
-
-
Kündig, E.P.1
Chaudhuri, P.D.2
House, D.3
Bernardinelli, G.4
-
80
-
-
52049088477
-
-
For beneficial effects of 3,3′-diaryl substitution on BINOL-phosphoric acids, employed as chiral Bronsted acid catalysts in several asymmetric processes, see: (d) and references therein
-
For beneficial effects of 3,3′-diaryl substitution on BINOL-phosphoric acids, employed as chiral Bronsted acid catalysts in several asymmetric processes, see: (d) Terada, M. Chem. Commun. 2008, 4097-4112, and references therein.
-
(2008)
Chem. Commun.
, pp. 4097-4112
-
-
Terada, M.1
-
81
-
-
70349095768
-
-
note
-
Decreasing the reaction temperature to - 30°C did not bring any significant improvement on the enantioselectivity of cycloadditions with substrates 1d, 1f, or 1h, neither with catalyst (S,S,S)-I or (R,R,R)-K.
-
-
-
-
82
-
-
34948818842
-
-
Previously reported examples deal with alkyne-tethered 1,3-dienes. For instance, see: (a)
-
Previously reported examples deal with alkyne-tethered 1,3-dienes. For instance, see: (a) Shintani, R.; Sannohe, Y.; Tsuji, T.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 7277-7280.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 7277-7280
-
-
Shintani, R.1
Sannohe, Y.2
Tsuji, T.3
Hayashi, T.4
-
83
-
-
33749565257
-
-
and references therein
-
(b) Aikawa, K.; Akutagawa, S.; Mikami, K. J. Am. Chem. Soc. 2006, 128, 12648-12649, and references therein.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 12648-12649
-
-
Aikawa, K.1
Akutagawa, S.2
Mikami, K.3
-
84
-
-
0032567381
-
-
and references therein
-
(c) Gilbertson, S. T.; Hoge, G. S.; Genov, D. G. J. Org. Chem. 1998, 63, 10077-10080, and references therein
-
(1998)
J. Org. Chem.
, vol.63
, pp. 10077-10080
-
-
Gilbertson, S.T.1
Hoge, G.S.2
Genov, D.G.3
-
85
-
-
57149087486
-
-
Only very recently, chiral phosphoramidites have been shown effective in other transition metal catalyzed asymmetric cycloadditions with Rh, Pd or Co catalysts. For representative cases with Pd, see: (a)
-
Only very recently, chiral phosphoramidites have been shown effective in other transition metal catalyzed asymmetric cycloadditions with Rh, Pd or Co catalysts. For representative cases with Pd, see: (a) Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2008, 130, 16174-16175.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 16174-16175
-
-
Shintani, R.1
Park, S.2
Shirozu, F.3
Murakami, M.4
Hayashi, T.5
-
86
-
-
34547767107
-
-
(b) Shintani, R.; Park, S.; Duan, W. L.; Hayashi, T. Angew. Chem., Int. Ed. 2007, 46, 5901-5903.
-
(2007)
Angew. Chem., Int. Ed.
, vol.46
, pp. 5901-5903
-
-
Shintani, R.1
Park, S.2
Duan, W.L.3
Hayashi, T.4
-
87
-
-
35348990757
-
-
(c) Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007, 129, 12356-12357.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 12356-12357
-
-
Shintani, R.1
Murakami, M.2
Hayashi, T.3
-
88
-
-
57349194634
-
-
(d) Trost, B. M.; McDougall, P. J.; Hartmann, O.; Wathen, P. T. J. Am. Chem. Soc. 2008, 130, 14960-14961.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 14960-14961
-
-
Trost, B.M.1
McDougall, P.J.2
Hartmann, O.3
Wathen, P.T.4
-
89
-
-
35348988125
-
-
(e) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12398-12399.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 12398-12399
-
-
Trost, B.M.1
Cramer, N.2
Silverman, S.M.3
-
90
-
-
33750053278
-
-
(f) Trost, B. M.; Stambuli, J. P.; Silverman, S. M.; Schworer, U. J. Am. Chem. Soc. 2006, 128, 13328-13329,
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 13328-13329
-
-
Trost, B.M.1
Stambuli, J.P.2
Silverman, S.M.3
Schworer, U.4
-
91
-
-
70349784873
-
-
For Rh, see. (g) and references therein
-
For Rh, see. (g) Yu, R. T.; Lee, E. E.; Malik, G.; Rovis, T. Angew. Chem. Int. Chem. 2009, 48, 2379-2382, and references therein.
-
(2009)
Angew. Chem. Int. Chem.
, vol.48
, pp. 2379-2382
-
-
Yu, R.T.1
Lee, E.E.2
Malik, G.3
Rovis, T.4
-
92
-
-
38849196273
-
-
For Co, see: (h)
-
For Co, see: (h) Toselli, N.; Martin, D.; Achard, M.; Tenaglia, A.; Burgi, T.; Buono, G. Adv. Synth. Catal. 2008, 350, 280-286.
-
(2008)
Adv. Synth. Catal.
, vol.350
, pp. 280-286
-
-
Toselli, N.1
Martin, D.2
Achard, M.3
Tenaglia, A.4
Burgi, T.5
Buono, G.6
-
93
-
-
70349091279
-
-
note
-
Comparison of optical rotations and chiral HPLC analysis allow to propose the same absolute configuration for the remaining [4C+2C] adducts obtained with (S,S,S)-I. Catalyst (R,R,R)-K provided, in every case, opposite absolute configuration than (S,S,S)-I.
-
-
-
-
94
-
-
35048851210
-
-
For a Pt-catalyzed [3C+2C] cycloaddition of allenenes: (a)
-
For a Pt-catalyzed [3C+2C] cycloaddition of allenenes: (a) Zhang, G.; Catalano, V. J.; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358-11359.
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 11358-11359
-
-
Zhang, G.1
Catalano, V.J.2
Zhang, L.3
-
95
-
-
70349139089
-
-
For two examples on Au-catalyzed [3C+2C] cycloadditions, see also ref 11
-
(b) For two examples on Au-catalyzed [3C+2C] cycloadditions, see also ref 11.
-
-
-
-
97
-
-
33746048429
-
-
For intramolecular versions, see: (b) and references therein
-
For intramolecular versions, see: (b) Zhang, Z.; Liu, C.; Kinder, R. E.; Han, X.; Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2006, 128, 9066-9073, and references therein.
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 9066-9073
-
-
Zhang, Z.1
Liu, C.2
Kinder, R.E.3
Han, X.4
Qian, H.5
Widenhoefer, R.A.6
-
98
-
-
70349118483
-
-
note
-
Reaction of allenediene 1a with catalyst B (10 mol %), in the presence of 3 equiv of MeOH, provided the same ratio of [4C+3C] and [4C+2C] products as obtained in the absence of MeOH (2a:3a ratio = 1:10).
-
-
-
-
99
-
-
70349102355
-
-
note
-
In consonance with this proposal, Toste et. al. reported that a related allenediene selectively mono deuterated at the terminal position of the diene provided a stereoselective [4C+2C] cycloaddition, making very unlikely a cationic pathway involving species such as II (see ref 11).
-
-
-
-
100
-
-
70349086007
-
-
note
-
A cationic structure keeping frozen the C-C distance of the new formed C-C bond (forming the 5-membered ring) resembling the structure of II was optimized. Nonetheless, when performing a full geometry optimization starting from this forced structure, it always evolved to initial reactants breaking the C-C bond, therefore suggesting that this is not a stable species.
-
-
-
-
101
-
-
53849089263
-
-
An alternative 1,2-methyl shift on intermediate IV might also be proposed and would lead to a [4C+3C] cycloadduct of type 2b″ (see equation below). However, this cycloadduct was never observed in the cycloaddition of 1b. This type of 1,2-alkyl migration was only observed when the allene has a cyclic substituent at the distal position, such as in 1a. Apparently, the release of strain associated with the 1,2-alkyl shift allows to overcome the preference of a 1,2-H shift. For reviews on migratory aptitudes of different substituents on metal carbenes, see: (a)
-
An alternative 1,2-methyl shift on intermediate IV might also be proposed and would lead to a [4C+3C] cycloadduct of type 2b″ (see equation below). However, this cycloadduct was never observed in the cycloaddition of 1b. This type of 1,2-alkyl migration was only observed when the allene has a cyclic substituent at the distal position, such as in 1a. Apparently, the release of strain associated with the 1,2-alkyl shift allows to overcome the preference of a 1,2-H shift. For reviews on migratory aptitudes of different substituents on metal carbenes, see: (a) Crone, B.; Kirsch, S. F. Chem. - Eur. J. 2008, 14, 3514-3522.
-
(2008)
Chem. - Eur. J.
, vol.14
, pp. 3514-3522
-
-
Crone, B.1
Kirsch, S.F.2
-
103
-
-
0002843719
-
-
Chemical Equation Presented
-
(c) Liu, M. T. H. Acc. Chem. Res. 1994, 27, 287-294] (Chemical Equation Presented)
-
(1994)
Acc. Chem. Res.
, vol.27
, pp. 287-294
-
-
Liu, M.T.H.1
-
104
-
-
0000552007
-
-
The minor formation of the [4C+2C] adduct 3d from cis-1d (vide supra), might be explained by a partial Z/E-isomerization (see ref 15a). Alternatively, cationic stepwise mechanisms operating from cis-1d cannot be fully discarded. For instance, see
-
The minor formation of the [4C+2C] adduct 3d from cis-1d (vide supra), might be explained by a partial Z/E-isomerization (see ref 15a). Alternatively, cationic stepwise mechanisms operating from cis-1d cannot be fully discarded. For instance, see: Gassman, P. G.; Singleton, D. A. J. Org. Chem. 1984, 106, 6085-6086.
-
(1984)
J. Org. Chem.
, vol.106
, pp. 6085-6086
-
-
Gassman, P.G.1
Singleton, D.A.2
-
105
-
-
70349114077
-
-
note
-
The 1,2-H shift leading to V is actually a two step process: the first one with a 8.6 kcal/mol activation barrier corresponds to an axial-to-ecuatorial conformational change on the seven-membered ring to obtain the appropriate parallel disposition of the orbitals implicated in the subsequent 1,2-H shift; this intermediate, IV′, lies 8.1 kcal/mol over IV. The second step is the 1,2-H shift properly speaking with an activation barrier of 2.2 kcal/mol. The energy barrier for the transformation of IV′ to IV is so small (0.5 kcal/mol), that in practice, the evolution from intermediate IV to the product V can be considered taking place in a single step. Thus, for clarity reasons, we depicted this process in Figure 4 as a single step with the overall barrier of 10.3 kcal mol. For a complete description of this process, see the Supporting Information.
-
-
-
-
106
-
-
15744375697
-
-
Gaussian, Inc.: Wallingford CT, See Supporting Information, ref 21
-
Frisch, M. J. et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford CT, 2004. (See Supporting Information, ref 21.)
-
(2004)
Gaussian 03, Revision C.02
-
-
Frisch, M.J.1
-
109
-
-
33751157732
-
-
(c) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 11623-11627
-
-
Stephens, P.J.1
Devlin, F.J.2
Chabalowski, C.F.3
Frisch, M.J.4
-
112
-
-
43949164796
-
-
Höllwarth, A.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Gobbi, A.; Jonas, V.; Köhler, K. F.; Stegman, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 237-240.
-
(1993)
Chem. Phys. Lett.
, vol.208
, pp. 237-240
-
-
Höllwarth, A.1
Böhme, M.2
Dapprich, S.3
Ehlers, A.W.4
Gobbi, A.5
Jonas, V.6
Köhler, K.F.7
Stegman, R.8
Veldkamp, A.9
Frenking, G.10
|