-
2
-
-
85149612939
-
Fast effective rule induction
-
A. Prieditis and S. Russell, editors, Tahoe City, CA, July. Morgan Kaufmann
-
W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, editors, Proceedings of the 12th International Conference on Machine Learning, pages 115-123, Tahoe City, CA, July 1995. Morgan Kaufmann.
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 115-123
-
-
Cohen, W.W.1
-
4
-
-
84949225207
-
Noise elimination in inductive concept learning: A case study in medical diagnosis
-
Springer
-
D. Gamberger, N. Lavrač, and S. Džeroski. Noise elimination in inductive concept learning: a case study in medical diagnosis. In Algorithmic Learning Theory, 7th International Workshop, ALT '96, Sydney, Australia, October 1996, Proceedings, volume 1160, pages 199-212. Springer, 1996.
-
(1996)
Algorithmic Learning Theory, 7th International Workshop, ALT '96, Sydney, Australia, October 1996, Proceedings
, vol.1160
, pp. 199-212
-
-
Gamberger, D.1
Lavrač, N.2
Džeroski, S.3
-
5
-
-
0011984911
-
Experiments with noise filtering in a medical domain
-
Morgan Kaufmann, San Francisco, CA
-
D. Gamberger, N. Lavrač, and C. Grošelj. Experiments with noise filtering in a medical domain. In Proceedings of 16th International Conference on Machine Learning, pages 143-151. Morgan Kaufmann, San Francisco, CA, 1999.
-
(1999)
Proceedings of 16th International Conference on Machine Learning
, pp. 143-151
-
-
Gamberger, D.1
Lavrač, N.2
Grošelj, C.3
-
6
-
-
8444224881
-
Data quality mining: Making a virtue of necessity
-
Santa Barbara, CA, May
-
J. Hipp, U. Güntzer, and U. Grimmer. Data quality mining: Making a virtue of necessity. In Proceedings of 6th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, pages 52-57, Santa Barbara, CA, May 2001.
-
(2001)
Proceedings of 6th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
, pp. 52-57
-
-
Hipp, J.1
Güntzer, U.2
Grimmer, U.3
-
7
-
-
14844337488
-
The necessity of assuring quality in software measurement data
-
Chicago, IL, September. IEEE Computer Society
-
T. M. Khoshgoftaar and N. Seliya. The necessity of assuring quality in software measurement data. In Proceedings of 10th International Software Metrics Symposium, pages 119-130, Chicago, IL, September 2004. IEEE Computer Society.
-
(2004)
Proceedings of 10th International Software Metrics Symposium
, pp. 119-130
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
-
8
-
-
84883723652
-
Noise elimination with ensemble-classifier filtering for software quality estimation
-
T. M. Khoshgoftaar, S. Zhong, and V. Joshi. Noise elimination with ensemble-classifier filtering for software quality estimation. Intelligent Data Analysis: An International Journal, 9(1):3-27, 2005.
-
(2005)
Intelligent Data Analysis: An International Journal
, vol.9
, Issue.1
, pp. 3-27
-
-
Khoshgoftaar, T.M.1
Zhong, S.2
Joshi, V.3
-
9
-
-
84866660672
-
Systematic development of data mining-based data quality tools
-
Berlin, Germany
-
D. Läbbers, U. Grimmer, and M. Jarke. Systematic development of data mining-based data quality tools. In Proceedings of the 29th VLDB Conference, pages 548-559, Berlin, Germany, 2003.
-
(2003)
Proceedings of the 29th VLDB Conference
, pp. 548-559
-
-
Läbbers, D.1
Grimmer, U.2
Jarke, M.3
-
10
-
-
0031988271
-
Data quality and systems theory
-
February
-
K. Orr. Data quality and systems theory. CACM, 41(2):66-71, February 1998.
-
(1998)
CACM
, vol.41
, Issue.2
, pp. 66-71
-
-
Orr, K.1
-
11
-
-
0031988304
-
The impact of poor data quality on the typical enterprise
-
February
-
T. Redman. The impact of poor data quality on the typical enterprise. CACM, 41(2):79-82, February 1998.
-
(1998)
CACM
, vol.41
, Issue.2
, pp. 79-82
-
-
Redman, T.1
-
14
-
-
1942484424
-
Eliminating class noise in large datasets
-
Washington, DC, August
-
X. Zhu, X. Wu, and Q. Chen. Eliminating class noise in large datasets. In Proceedings of 20th International Conference on Machine Learning, Washington, DC, August 2003.
-
(2003)
Proceedings of 20th International Conference on Machine Learning
-
-
Zhu, X.1
Wu, X.2
Chen, Q.3
|