메뉴 건너뛰기




Volumn 13, Issue 3, 2003, Pages 370-376

Gene selection in microarray data: The elephant, the blind men and our algorithms

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ANALYTIC METHOD; BLINDNESS; CELL ACTIVITY; CELL STRUCTURE; CLASSIFICATION; DATA ANALYSIS; DNA MICROARRAY; ELEPHANT; EXPERIMENT; GENE CLUSTER; GENE EXPRESSION; GENETIC ANALYSIS; GENETIC SELECTION; GENETIC TRANSCRIPTION; INFORMATION PROCESSING; LITERATURE; MULTIVARIATE ANALYSIS; PRIORITY JOURNAL; REVIEW; STATISTICAL ANALYSIS; STRUCTURE ANALYSIS; TECHNOLOGY; VALIDATION PROCESS;

EID: 0037494667     PISSN: 0959440X     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0959-440X(03)00078-2     Document Type: Review
Times cited : (24)

References (41)
  • 2
    • 84874648543 scopus 로고    scopus 로고
    • ArrayExpress database on World Wide Web URL: http://www.ebi.ac.uk/arrayexpress/.
    • ArrayExpress Database
  • 3
  • 5
    • 85031157722 scopus 로고    scopus 로고
    • YF Leung's Microarray Links on World Wide Web URL: http://ihome.cuhk.edu.hk/%7Eb400559/array.html.
    • YF Leung's Microarray Links
  • 6
    • 0036899286 scopus 로고    scopus 로고
    • From patterns to pathways: Gene expression data analysis comes of age
    • Slonim D.K. From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32:2002;502-508.
    • (2002) Nat. Genet. , vol.32 , pp. 502-508
    • Slonim, D.K.1
  • 7
    • 0036898577 scopus 로고    scopus 로고
    • Microarray data normalization and transformation
    • Quackenbush J. Microarray data normalization and transformation. Nat. Genet. 32:2002;496-501.
    • (2002) Nat. Genet. , vol.32 , pp. 496-501
    • Quackenbush, J.1
  • 8
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • This paper unifies three apparently different methods under the umbrella of t-type statistics. It shows that, even though the scores are very similar, different ways of sampling its distribution can lead to different rejection regions for the null hypotheses, thus yielding different lists of selected genes.
    • Pan W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics. 18:2002;546-554 This paper unifies three apparently different methods under the umbrella of t-type statistics. It shows that, even though the scores are very similar, different ways of sampling its distribution can lead to different rejection regions for the null hypotheses, thus yielding different lists of selected genes.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 9
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • This paper considers three nonparametric methods of gene selection. (One of these methods, the ideal discriminator method, could be mapped to a t-type score, a property not discussed in the paper.) One of the important features of this paper is the use of synthetic data. This allowed the authors to evaluate the performance of their algorithms not only in terms of their false positives rate (which is usually controlled by the p-value from randomized experiments), but also in terms of their false negatives rate.
    • Troyanskaya O.G., Garber M.E., Brown P.O., Botstein D., Altman R.B. Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics. 18:2002;1454-1461 This paper considers three nonparametric methods of gene selection. (One of these methods, the ideal discriminator method, could be mapped to a t-type score, a property not discussed in the paper.) One of the important features of this paper is the use of synthetic data. This allowed the authors to evaluate the performance of their algorithms not only in terms of their false positives rate (which is usually controlled by the p-value from randomized experiments), but also in terms of their false negatives rate.
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.G.1    Garber, M.E.2    Brown, P.O.3    Botstein, D.4    Altman, R.B.5
  • 10
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomics patterns
    • Liu H., Li J., Wong L. A comparative study on feature selection and classification methods using gene expression profiles and proteomics patterns. Genome Inform. 13:2002;51-60.
    • (2002) Genome Inform. , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 12
    • 0036051492 scopus 로고    scopus 로고
    • How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach
    • Pan W., Lin J., Le C.T. How many replicates of arrays are required to detect gene expression changes in microarray experiments? A mixture model approach. Genome Biol. 3:2002;22.
    • (2002) Genome Biol. , vol.3 , pp. 22
    • Pan, W.1    Lin, J.2    Le, C.T.3
  • 13
    • 0037250118 scopus 로고    scopus 로고
    • Prediction of biologically significant components from microarray data: Independently consistent expression discriminator (ICED)
    • Bijlani R., Cheng Y., Pearce D.A., Brooks A.I., Ogihara M. Prediction of biologically significant components from microarray data: independently consistent expression discriminator (ICED). Bioinformatics. 19:2003;62-70.
    • (2003) Bioinformatics , vol.19 , pp. 62-70
    • Bijlani, R.1    Cheng, Y.2    Pearce, D.A.3    Brooks, A.I.4    Ogihara, M.5
  • 14
    • 0037245821 scopus 로고    scopus 로고
    • Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients
    • Li J., Liu H., Downing J.R., Yeoh A.E., Wong L. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics. 19:2003;71-78.
    • (2003) Bioinformatics , vol.19 , pp. 71-78
    • Li, J.1    Liu, H.2    Downing, J.R.3    Yeoh, A.E.4    Wong, L.5
  • 15
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Fayyad U, Irani K: Multi-interval discretization of continuous-valued attributes for classification learning. Proc 13th Int Joint Conf Artif Intel 1993:1022-1029.
    • (1993) Proc 13th Int Joint Conf Artif Intel , pp. 1022-1029
    • Fayyad, U.1    Irani, K.2
  • 16
    • 0036434526 scopus 로고    scopus 로고
    • Zipf's law in importance of genes for cancer classification using microarray data
    • This paper introduces the use of Zipf's plots in gene expression analysis. Zipf's plots could reveal an intrinsic separation between important and irrelevant genes. In their Zipf's plot analysis using a maximum likelihood algorithm, the authors did not find such intrinsic separation. But it may be possible that Zipf's plots based on different scores reveal such a threshold.
    • Li W., Yang Y. Zipf's law in importance of genes for cancer classification using microarray data. J. Theor. Biol. 219:2002;539-551 This paper introduces the use of Zipf's plots in gene expression analysis. Zipf's plots could reveal an intrinsic separation between important and irrelevant genes. In their Zipf's plot analysis using a maximum likelihood algorithm, the authors did not find such intrinsic separation. But it may be possible that Zipf's plots based on different scores reveal such a threshold.
    • (2002) J. Theor. Biol. , vol.219 , pp. 539-551
    • Li, W.1    Yang, Y.2
  • 18
    • 0037195138 scopus 로고    scopus 로고
    • Quantitative noise analysis for gene expression microarray experiments
    • Tu Y., Stolovitzky G., Klein U. Quantitative noise analysis for gene expression microarray experiments. Proc. Natl. Acad Sci. USA. 99:2002;14031-14036.
    • (2002) Proc. Natl. Acad Sci. USA , vol.99 , pp. 14031-14036
    • Tu, Y.1    Stolovitzky, G.2    Klein, U.3
  • 20
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O., Brown P.O., Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad Sci. USA. 97:2000;10101-10106.
    • (2000) Proc. Natl. Acad Sci. USA , vol.97 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 21
    • 0037452966 scopus 로고    scopus 로고
    • Botstein D, Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms
    • Alter O., Brown P.O. Botstein D, Generalized singular value decomposition for comparative analysis of genome-scale expression data sets of two different organisms. Proc. Natl. Acad Sci. USA. 100:2003;3351-3356.
    • (2003) Proc. Natl. Acad Sci. USA , vol.100 , pp. 3351-3356
    • Alter, O.1    Brown, P.O.2
  • 22
    • 0037399130 scopus 로고    scopus 로고
    • Spectral biclustering of microarray data: Coclustering genes and conditions
    • The importance of normalization in classification using SVD was clearly emphasized and studied in this paper. It also suggests a method of selecting eigenmodes based on the piecewise constant nature of the eigengenes to highlight the checkerboard structure of the gene expression matrix.
    • Kluger Y., Basri R., Chang J.T., Gerstein M. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res. 13:2003;703-716 The importance of normalization in classification using SVD was clearly emphasized and studied in this paper. It also suggests a method of selecting eigenmodes based on the piecewise constant nature of the eigengenes to highlight the checkerboard structure of the gene expression matrix.
    • (2003) Genome Res. , vol.13 , pp. 703-716
    • Kluger, Y.1    Basri, R.2    Chang, J.T.3    Gerstein, M.4
  • 23
    • 0036012349 scopus 로고    scopus 로고
    • Plaid models for gene expression data
    • Lazzeroni L., Owen A. Plaid models for gene expression data. Statistica Sinica. 12:2002;61-86.
    • (2002) Statistica Sinica , vol.12 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.2
  • 25
    • 0034710876 scopus 로고    scopus 로고
    • Coupled two-way clustering analysis of gene microarray data
    • Getz G., Levine E., Domany E. Coupled two-way clustering analysis of gene microarray data. Proc. Natl. Acad Sci. USA. 97:2000;12079-12084.
    • (2000) Proc. Natl. Acad Sci. USA , vol.97 , pp. 12079-12084
    • Getz, G.1    Levine, E.2    Domany, E.3
  • 28
    • 0036069214 scopus 로고    scopus 로고
    • Interactive exploration of microarray gene expression patterns in a reduced dimensional space
    • An investigation into the use of SVD for gene selection. By filtering out genes with small loadings in the two dominant eigenmodes and keeping only those genes that keep the structure of the scores plot minimally distorted, these authors identified tissue-specific genes.
    • Misra J., Schmitt W., Hwang D., Hsiao L.L., Gullans S., Stephanopoulos G. Interactive exploration of microarray gene expression patterns in a reduced dimensional space. Genome Res. 12:2002;1112-1120 An investigation into the use of SVD for gene selection. By filtering out genes with small loadings in the two dominant eigenmodes and keeping only those genes that keep the structure of the scores plot minimally distorted, these authors identified tissue-specific genes.
    • (2002) Genome Res. , vol.12 , pp. 1112-1120
    • Misra, J.1    Schmitt, W.2    Hwang, D.3    Hsiao, L.L.4    Gullans, S.5    Stephanopoulos, G.6
  • 29
    • 0036166753 scopus 로고    scopus 로고
    • Linear modes of gene expression determined by independent component analysis
    • Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics. 18:2002;51-60.
    • (2002) Bioinformatics , vol.18 , pp. 51-60
    • Liebermeister, W.1
  • 30
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • Antoniadis A., Lambert-Lacroix S., Leblanc F. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics. 19:2003;563-570.
    • (2003) Bioinformatics , vol.19 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 31
    • 0037460957 scopus 로고    scopus 로고
    • PCA disjoint models for multiclass cancer analysis using gene expression data
    • Bicciato S., Luchini A., Di Bello C. PCA disjoint models for multiclass cancer analysis using gene expression data. Bioinformatics. 19:2003;571-578.
    • (2003) Bioinformatics , vol.19 , pp. 571-578
    • Bicciato, S.1    Luchini, A.2    Di Bello, C.3
  • 32
    • 0037709918 scopus 로고    scopus 로고
    • Supervised clustering of genes
    • Dettling M., Buhlmann P. Supervised clustering of genes. Genome Biol. 3:2002;69.
    • (2002) Genome Biol. , vol.3 , pp. 69
    • Dettling, M.1    Buhlmann, P.2
  • 33
    • 0037255041 scopus 로고    scopus 로고
    • Evolutionary algorithms for finding optimal gene sets in microarray prediction
    • Deutsch J.M. Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics. 19:2003;45-52.
    • (2003) Bioinformatics , vol.19 , pp. 45-52
    • Deutsch, J.M.1
  • 34
    • 0036211375 scopus 로고    scopus 로고
    • Strong feature sets from small samples
    • This paper exhaustively evaluates the ability of all groups of d genes (d≤3) to classify between two tissue types. The large computational burden of exploring all possible gene groups is compensated by an analytical linear classifier whose predictive power can be assessed by an elegant method in which the mass of the sample points is spread to make classification more difficult, while maintaining the sample geometry, without doing a leave-one-out cross-validation.
    • Kim S., Dougherty E.R., Barrera J., Chen Y., Bittner M.L., Trent J.M. Strong feature sets from small samples. J. Comput. Biol. 9:2002;127-146 This paper exhaustively evaluates the ability of all groups of d genes (d≤3) to classify between two tissue types. The large computational burden of exploring all possible gene groups is compensated by an analytical linear classifier whose predictive power can be assessed by an elegant method in which the mass of the sample points is spread to make classification more difficult, while maintaining the sample geometry, without doing a leave-one-out cross-validation.
    • (2002) J. Comput. Biol. , vol.9 , pp. 127-146
    • Kim, S.1    Dougherty, E.R.2    Barrera, J.3    Chen, Y.4    Bittner, M.L.5    Trent, J.M.6
  • 37
    • 0037358145 scopus 로고    scopus 로고
    • Identification of a global gene expression signature of B-chronic lymphocytic leukemia
    • An example of merging together the results of a battery of univariate and multivariate techniques to find differentially expressing genes between cancer and control samples. The genes resulting from the combination of algorithms were validated by classification in a completely independent data set generated in a different laboratory.
    • Jelinek D.F., Tschumper R.C., Stolovitzky G.A., Iturria S.J., Tu Y., Lepre J., Shah N., Kay N.E. Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Mol. Cancer Res. 1:2003;346-361 An example of merging together the results of a battery of univariate and multivariate techniques to find differentially expressing genes between cancer and control samples. The genes resulting from the combination of algorithms were validated by classification in a completely independent data set generated in a different laboratory.
    • (2003) Mol. Cancer Res. , vol.1 , pp. 346-361
    • Jelinek, D.F.1    Tschumper, R.C.2    Stolovitzky, G.A.3    Iturria, S.J.4    Tu, Y.5    Lepre, J.6    Shah, N.7    Kay, N.E.8
  • 39
    • 0038017587 scopus 로고    scopus 로고
    • Mining microarray expression data by literature profiling
    • Chaussabel D., Sher A. Mining microarray expression data by literature profiling. Genome Biol. 3:2002;55.
    • (2002) Genome Biol. , vol.3 , pp. 55
    • Chaussabel, D.1    Sher, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.