-
2
-
-
0023646365
-
Occam's Razor
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's Razor. Information Processing Letters, 24(6):377-380, 1987.
-
(1987)
Information Processing Letters
, vol.24
, Issue.6
, pp. 377-380
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.K.4
-
3
-
-
0028447220
-
Deliberation scheduling for problem solving in time constrained environments
-
M. Boddy and T. L. Dean. Deliberation scheduling for problem solving in time constrained environments. Artificial Intelligence, 67(2):245-285, 1994.
-
(1994)
Artificial Intelligence
, vol.67
, Issue.2
, pp. 245-285
-
-
Boddy, M.1
Dean, T.L.2
-
4
-
-
1942452791
-
Choosing between two learning algorithms based on calibrated tests
-
Washington, DC, USA
-
R. R. Bouckaert. Choosing between two learning algorithms based on calibrated tests. In ICML'03, pages 51-58, Washington, DC, USA, 2003.
-
(2003)
ICML'03
, pp. 51-58
-
-
Bouckaert, R.R.1
-
5
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0003802343
-
-
Wadsworth and Brooks, Monterey, CA
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
7
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998. (Pubitemid 128695475)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
9
-
-
14344253489
-
Lookahead-based algorithms for anytime induction of decision trees
-
S. Esmeir and S. Markovitch. Lookahead-based algorithms for anytime induction of decision trees. In ICML'04, pages 257-264, 2004.
-
(2004)
ICML'04
, pp. 257-264
-
-
Esmeir, S.1
Markovitch, S.2
-
10
-
-
33750313729
-
Is random model better? on its accuracy and efficiency
-
W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? on its accuracy and efficiency. In ICDM'03, pages 51-58, 2003.
-
(2003)
ICDM'03
, pp. 51-58
-
-
Fan, W.1
Wang, H.2
Yu, P.S.3
Ma, S.4
-
12
-
-
14344259210
-
Text categorization with many redundant features: Using aggressive feature selection to make svms competitive with c4.5
-
E. Gabrilovich and S. Markovitch. Text categorization with many redundant features: Using aggressive feature selection to make svms competitive with c4.5. In ICML'04, pages 321-328, 2004.
-
(2004)
ICML'04
, pp. 321-328
-
-
Gabrilovich, E.1
Markovitch, S.2
-
13
-
-
0003684449
-
-
New York: Springer-Verlag
-
T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference, and prediction. New York: Springer-Verlag, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
15
-
-
44649092482
-
Comparing naive bayes, decision trees, and svm using accuracy and auc
-
J. Huang, J. Lu, and C. Ling. Comparing naive bayes, decision trees, and svm using accuracy and auc. In ICDM'03, Melbourne, FL, 2003.
-
ICDM'03, Melbourne, FL, 2003
-
-
Huang, J.1
Lu, J.2
Ling, C.3
-
16
-
-
0001815269
-
Constructing optimal binary decision trees is NP-complete
-
L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5(1):15-17, 1976.
-
(1976)
Information Processing Letters
, vol.5
, Issue.1
, pp. 15-17
-
-
Hyafil, L.1
Rivest, R.L.2
-
17
-
-
84957803501
-
Anytime algorithm for feature selection
-
Springer-Verlag
-
M. Last, A. Kandel, O. Maimon, and E. Eberbach. Anytime algorithm for feature selection. In RSCTC'01, pages 532-539. Springer-Verlag, 2001.
-
(2001)
RSCTC'01
, pp. 532-539
-
-
Last, M.1
Kandel, A.2
Maimon, O.3
Eberbach, E.4
-
18
-
-
77953554254
-
Budgeted learning of naive bayes classifiers
-
D. J. Lizotte, O. Madani, and R. Greiner. Budgeted learning of naive bayes classifiers. In UAI'03, Acapulco, Mexico, 2003.
-
UAI'03, Acapulco, Mexico, 2003
-
-
Lizotte, D.J.1
Madani, O.2
Greiner, R.3
-
19
-
-
0026123944
-
Designing storage efficient decision trees
-
O. J. Murphy and R. L. McCraw. Designing storage efficient decision trees. IEEE Transactions on Computers, 40(3):315-320, 1991.
-
(1991)
IEEE Transactions on Computers
, vol.40
, Issue.3
, pp. 315-320
-
-
Murphy, O.J.1
McCraw, R.L.2
-
21
-
-
0346768473
-
Breeding decision trees using evolutionary techniques
-
San Francisco, CA, USA
-
A. Papagelis and D. Kalles. Breeding decision trees using evolutionary techniques. In ICML'01, pages 393-400, San Francisco, CA, USA, 2001.
-
(2001)
ICML'01
, pp. 393-400
-
-
Papagelis, A.1
Kalles, D.2
-
22
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
-
(1986)
Machine Learning
, vol.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
24
-
-
0038884984
-
Principles of metareasoning
-
San Mateo, California
-
S. J. Russell and E. Wefald. Principles of metareasoning. In KR'89, pages 400-411, San Mateo, California, 1989.
-
(1989)
KR'89
, pp. 400-411
-
-
Russell, S.J.1
Wefald, E.2
-
25
-
-
0002996283
-
Composing real-time systems
-
Sydney, Australia
-
S. J. Russell and S. Zilberstein. Composing real-time systems. In IJCAI'91, pages 212-217, Sydney, Australia, 1991.
-
(1991)
IJCAI'91
, pp. 212-217
-
-
Russell, S.J.1
Zilberstein, S.2
-
26
-
-
0030122886
-
Optimal composition of real-time systems
-
S. J. Russell and S. Zilberstein. Optimal composition of real-time systems. Artificial Intelligence, 82(1-2):181-213, 1996.
-
(1996)
Artificial Intelligence
, vol.82
, Issue.1-2
, pp. 181-213
-
-
Russell, S.J.1
Zilberstein, S.2
-
27
-
-
84880692052
-
A brief introduction to boosting
-
Stockholm, Sweden
-
R. Schapire. A brief introduction to boosting. In IJCAI'99, pages 1401-1406, Stockholm, Sweden, 1999.
-
(1999)
IJCAI'99
, pp. 1401-1406
-
-
Schapire, R.1
-
28
-
-
40649103884
-
Automatic recognition of regions of intrinsically poor multiple alignment using machine learning
-
Y. Shan, E. Milios, A. Roger, C. Blouin, and E. Susko. Automatic recognition of regions of intrinsically poor multiple alignment using machine learning. In CSB'03, 2003.
-
(2003)
CSB'03
-
-
Shan, Y.1
Milios, E.2
Roger, A.3
Blouin, C.4
Susko, E.5
-
29
-
-
0026119038
-
Symbolic and neural learning algorithms: An experimental comparison
-
J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms: An experimental comparison. Machine Learning, 6(2):111-143, 1991.
-
(1991)
Machine Learning
, vol.6
, Issue.2
, pp. 111-143
-
-
Shavlik, J.W.1
Mooney, R.J.2
Towell, G.G.3
-
30
-
-
77952642202
-
Incremental induction of decision trees
-
P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161-186, 1989.
-
(1989)
Machine Learning
, vol.4
, Issue.2
, pp. 161-186
-
-
Utgoff, P.E.1
-
31
-
-
0031246271
-
Decision Tree Induction Based on Efficient Tree Restructuring
-
P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on efficient tree restructuring. Machine Learning, 29(1):5-44, 1997. (Pubitemid 127507172)
-
(1997)
Machine Learning
, vol.29
, Issue.1
, pp. 5-44
-
-
Utgoff, P.E.1
Berkman, N.C.2
Clouse, J.A.3
-
32
-
-
11144294232
-
Classification of protein crystallization imagery
-
X. Zhu, S. Sun, S. E. Cheng, and M. Bern. Classification of protein crystallization imagery. In EMBS'04, San Francisco, CA, 2004.
-
EMBS'04, San Francisco, CA, 2004
-
-
Zhu, X.1
Sun, S.2
Cheng, S.E.3
Bern, M.4
|