메뉴 건너뛰기




Volumn , Issue , 2005, Pages 78-85

Interruptible anytime algorithms for iterative improvement of decision trees

Author keywords

anytime algorithms; anytime learning; cost quality tradeoff; decision trees; hard concepts

Indexed keywords

ANYTIME ALGORITHM; ANYTIME LEARNING; APRIORI; DECISION TREE INDUCTION; EMPIRICAL EVALUATIONS; ITERATIVE IMPROVEMENTS; MARGINAL UTILITY; NP COMPLETE PROBLEMS; PERFORMANCE PROFILE; SUBTREES; TIME ALLOCATION;

EID: 77953547618     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1089827.1089837     Document Type: Conference Paper
Times cited : (6)

References (32)
  • 3
    • 0028447220 scopus 로고
    • Deliberation scheduling for problem solving in time constrained environments
    • M. Boddy and T. L. Dean. Deliberation scheduling for problem solving in time constrained environments. Artificial Intelligence, 67(2):245-285, 1994.
    • (1994) Artificial Intelligence , vol.67 , Issue.2 , pp. 245-285
    • Boddy, M.1    Dean, T.L.2
  • 4
    • 1942452791 scopus 로고    scopus 로고
    • Choosing between two learning algorithms based on calibrated tests
    • Washington, DC, USA
    • R. R. Bouckaert. Choosing between two learning algorithms based on calibrated tests. In ICML'03, pages 51-58, Washington, DC, USA, 2003.
    • (2003) ICML'03 , pp. 51-58
    • Bouckaert, R.R.1
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2):121-167, 1998. (Pubitemid 128695475)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 14344253489 scopus 로고    scopus 로고
    • Lookahead-based algorithms for anytime induction of decision trees
    • S. Esmeir and S. Markovitch. Lookahead-based algorithms for anytime induction of decision trees. In ICML'04, pages 257-264, 2004.
    • (2004) ICML'04 , pp. 257-264
    • Esmeir, S.1    Markovitch, S.2
  • 10
    • 33750313729 scopus 로고    scopus 로고
    • Is random model better? on its accuracy and efficiency
    • W. Fan, H. Wang, P. S. Yu, and S. Ma. Is random model better? on its accuracy and efficiency. In ICDM'03, pages 51-58, 2003.
    • (2003) ICDM'03 , pp. 51-58
    • Fan, W.1    Wang, H.2    Yu, P.S.3    Ma, S.4
  • 12
    • 14344259210 scopus 로고    scopus 로고
    • Text categorization with many redundant features: Using aggressive feature selection to make svms competitive with c4.5
    • E. Gabrilovich and S. Markovitch. Text categorization with many redundant features: Using aggressive feature selection to make svms competitive with c4.5. In ICML'04, pages 321-328, 2004.
    • (2004) ICML'04 , pp. 321-328
    • Gabrilovich, E.1    Markovitch, S.2
  • 15
    • 44649092482 scopus 로고    scopus 로고
    • Comparing naive bayes, decision trees, and svm using accuracy and auc
    • J. Huang, J. Lu, and C. Ling. Comparing naive bayes, decision trees, and svm using accuracy and auc. In ICDM'03, Melbourne, FL, 2003.
    • ICDM'03, Melbourne, FL, 2003
    • Huang, J.1    Lu, J.2    Ling, C.3
  • 16
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is NP-complete
    • L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5(1):15-17, 1976.
    • (1976) Information Processing Letters , vol.5 , Issue.1 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 17
    • 84957803501 scopus 로고    scopus 로고
    • Anytime algorithm for feature selection
    • Springer-Verlag
    • M. Last, A. Kandel, O. Maimon, and E. Eberbach. Anytime algorithm for feature selection. In RSCTC'01, pages 532-539. Springer-Verlag, 2001.
    • (2001) RSCTC'01 , pp. 532-539
    • Last, M.1    Kandel, A.2    Maimon, O.3    Eberbach, E.4
  • 19
    • 0026123944 scopus 로고
    • Designing storage efficient decision trees
    • O. J. Murphy and R. L. McCraw. Designing storage efficient decision trees. IEEE Transactions on Computers, 40(3):315-320, 1991.
    • (1991) IEEE Transactions on Computers , vol.40 , Issue.3 , pp. 315-320
    • Murphy, O.J.1    McCraw, R.L.2
  • 21
    • 0346768473 scopus 로고    scopus 로고
    • Breeding decision trees using evolutionary techniques
    • San Francisco, CA, USA
    • A. Papagelis and D. Kalles. Breeding decision trees using evolutionary techniques. In ICML'01, pages 393-400, San Francisco, CA, USA, 2001.
    • (2001) ICML'01 , pp. 393-400
    • Papagelis, A.1    Kalles, D.2
  • 22
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 24
    • 0038884984 scopus 로고
    • Principles of metareasoning
    • San Mateo, California
    • S. J. Russell and E. Wefald. Principles of metareasoning. In KR'89, pages 400-411, San Mateo, California, 1989.
    • (1989) KR'89 , pp. 400-411
    • Russell, S.J.1    Wefald, E.2
  • 25
    • 0002996283 scopus 로고
    • Composing real-time systems
    • Sydney, Australia
    • S. J. Russell and S. Zilberstein. Composing real-time systems. In IJCAI'91, pages 212-217, Sydney, Australia, 1991.
    • (1991) IJCAI'91 , pp. 212-217
    • Russell, S.J.1    Zilberstein, S.2
  • 26
    • 0030122886 scopus 로고    scopus 로고
    • Optimal composition of real-time systems
    • S. J. Russell and S. Zilberstein. Optimal composition of real-time systems. Artificial Intelligence, 82(1-2):181-213, 1996.
    • (1996) Artificial Intelligence , vol.82 , Issue.1-2 , pp. 181-213
    • Russell, S.J.1    Zilberstein, S.2
  • 27
    • 84880692052 scopus 로고    scopus 로고
    • A brief introduction to boosting
    • Stockholm, Sweden
    • R. Schapire. A brief introduction to boosting. In IJCAI'99, pages 1401-1406, Stockholm, Sweden, 1999.
    • (1999) IJCAI'99 , pp. 1401-1406
    • Schapire, R.1
  • 28
    • 40649103884 scopus 로고    scopus 로고
    • Automatic recognition of regions of intrinsically poor multiple alignment using machine learning
    • Y. Shan, E. Milios, A. Roger, C. Blouin, and E. Susko. Automatic recognition of regions of intrinsically poor multiple alignment using machine learning. In CSB'03, 2003.
    • (2003) CSB'03
    • Shan, Y.1    Milios, E.2    Roger, A.3    Blouin, C.4    Susko, E.5
  • 29
    • 0026119038 scopus 로고
    • Symbolic and neural learning algorithms: An experimental comparison
    • J. W. Shavlik, R. J. Mooney, and G. G. Towell. Symbolic and neural learning algorithms: An experimental comparison. Machine Learning, 6(2):111-143, 1991.
    • (1991) Machine Learning , vol.6 , Issue.2 , pp. 111-143
    • Shavlik, J.W.1    Mooney, R.J.2    Towell, G.G.3
  • 30
    • 77952642202 scopus 로고
    • Incremental induction of decision trees
    • P. E. Utgoff. Incremental induction of decision trees. Machine Learning, 4(2):161-186, 1989.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 161-186
    • Utgoff, P.E.1
  • 31
    • 0031246271 scopus 로고    scopus 로고
    • Decision Tree Induction Based on Efficient Tree Restructuring
    • P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on efficient tree restructuring. Machine Learning, 29(1):5-44, 1997. (Pubitemid 127507172)
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.