메뉴 건너뛰기




Volumn 22, Issue 4-5, 2009, Pages 702-717

Stable adaptive control with recurrent neural networks for square MIMO non-linear systems

Author keywords

Adaptive control; Fully connected recurrent neural networks; Lyapunov function; Multivariable systems; Stability

Indexed keywords

ADAPTIVE CONTROL; CLOSED-LOOP PERFORMANCE; CONTROL PROBLEMS; CONTROL SCHEMES; FULLY CONNECTED RECURRENT NEURAL NETWORKS; INDIRECT ADAPTIVE CONTROL; LYAPUNOV APPROACH; MODEL UNCERTAINTIES; MULTI VARIABLES; NEURAL CONTROLLER; NEURAL MODELS; NON-LINEAR; ON-LINE PARAMETER; RATE PARAMETERS; REAL-TIME RECURRENT LEARNING; REAL-WORLD; SENSOR NOISE; SUFFICIENT CONDITIONS; TENNESSEE EASTMAN CHALLENGE;

EID: 67349113480     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2008.12.005     Document Type: Article
Times cited : (37)

References (32)
  • 1
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: unifying the algorithms and accelerating convergence
    • Atiya A.F., and Parlos A.G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Transactions on Neural Networks 11 3 (2000) 697-709
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 2
    • 0033083238 scopus 로고    scopus 로고
    • A conjugate gradient learning algorithm for recurrent neural networks
    • Chang W.F., and Mak M.W. A conjugate gradient learning algorithm for recurrent neural networks. Neurocomputing 24 1-3 (1999) 173-189
    • (1999) Neurocomputing , vol.24 , Issue.1-3 , pp. 173-189
    • Chang, W.F.1    Mak, M.W.2
  • 3
    • 0031997004 scopus 로고    scopus 로고
    • A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics
    • Chow T.W.S., and Fang Y. A recurrent neural-network-based real-time learning control strategy applying to nonlinear systems with unknown dynamics. IEEE Transactions on Industrial Electronics 45 1 (1998) 151-161
    • (1998) IEEE Transactions on Industrial Electronics , vol.45 , Issue.1 , pp. 151-161
    • Chow, T.W.S.1    Fang, Y.2
  • 5
    • 67349215463 scopus 로고    scopus 로고
    • Adaptive neural network control for uncertain or unknown non-linear systems
    • ′04, 30 auguste-2 septembre, Miedzyzdroje, Poland, pp
    • Druaux, F., Leclercq, E., Lefebvre, D., 2004. Adaptive neural network control for uncertain or unknown non-linear systems. In: Proceedings of IEEE-MMAR ′04, 30 auguste-2 septembre, Miedzyzdroje, Poland, pp. 1309-1314.
    • (2004) Proceedings of IEEE-MMAR , pp. 1309-1314
    • Druaux, F.1    Leclercq, E.2    Lefebvre, D.3
  • 6
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989) 183-192
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 7
    • 0034196337 scopus 로고    scopus 로고
    • Stable adaptive control for multivariable nonlinear systems with a triangular control structure
    • Ge S.S., Hang C.C., and Zhang T. Stable adaptive control for multivariable nonlinear systems with a triangular control structure. IEEE Transactions on Automatic Control 45 6 (2000) 1221-1225
    • (2000) IEEE Transactions on Automatic Control , vol.45 , Issue.6 , pp. 1221-1225
    • Ge, S.S.1    Hang, C.C.2    Zhang, T.3
  • 8
    • 0035680620 scopus 로고    scopus 로고
    • Ge, S.S., Wang, C., Tan, Y.H., 2001. Adaptive control of partially known nonlinear multivariable systems using neural networks. In: Proceedings of the 2001 IEEE International Symposium on Intelligent Control. September 5-7, Mexico City, Mexico.
    • Ge, S.S., Wang, C., Tan, Y.H., 2001. Adaptive control of partially known nonlinear multivariable systems using neural networks. In: Proceedings of the 2001 IEEE International Symposium on Intelligent Control. September 5-7, Mexico City, Mexico.
  • 9
    • 0036130465 scopus 로고    scopus 로고
    • Direct adaptive NN control of a class of nonlinear systems
    • Ge S.S., and Wang C. Direct adaptive NN control of a class of nonlinear systems. IEEE Transactions on Neural Networks 13 1 (2002) 214-221
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 214-221
    • Ge, S.S.1    Wang, C.2
  • 10
    • 0034069365 scopus 로고    scopus 로고
    • On the approximation capability of recurrent neural networks
    • Hammer B. On the approximation capability of recurrent neural networks. Neurocomputing 31 (2000) 107-124
    • (2000) Neurocomputing , vol.31 , pp. 107-124
    • Hammer, B.1
  • 11
    • 23944432485 scopus 로고    scopus 로고
    • Process control applications of subspaces and regression-based identification and monitoring methods
    • Portland, Oregon, USA
    • Juricek, B.C., Seborg, D.E., Larimore, W.E., 2005, Process control applications of subspaces and regression-based identification and monitoring methods. In: Proceedings of the ACC, Portland, Oregon, USA.
    • (2005) Proceedings of the ACC
    • Juricek, B.C.1    Seborg, D.E.2    Larimore, W.E.3
  • 12
    • 0344703438 scopus 로고    scopus 로고
    • Lyapunov stability
    • Levine W.S. (Ed), CRC Press and IEEE Press, New York
    • Khalil H.K. Lyapunov stability. In: Levine W.S. (Ed). The Control Handbook (1996), CRC Press and IEEE Press, New York 889-895
    • (1996) The Control Handbook , pp. 889-895
    • Khalil, H.K.1
  • 13
    • 12144260517 scopus 로고    scopus 로고
    • Autonomous learning algorithm for fully connected recurrent networks
    • Leclercq E., Druaux F., Lefebvre D., and Zerkaoui S. Autonomous learning algorithm for fully connected recurrent networks. Neurocomputing 63 (2005) 25-44
    • (2005) Neurocomputing , vol.63 , pp. 25-44
    • Leclercq, E.1    Druaux, F.2    Lefebvre, D.3    Zerkaoui, S.4
  • 14
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra K.S., and Parthasarathy K. Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks 1 1 (1990) 4-27
    • (1990) IEEE Transactions on Neural Networks , vol.1 , Issue.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 15
    • 0028734159 scopus 로고
    • Adaptive neurocontrol of MIMO systems based on stability theory
    • Orlando, pp
    • Renders, J.M., Saerens, M., Bersini, H., 1994. Adaptive neurocontrol of MIMO systems based on stability theory, IEEE-ICNN, Orlando, pp. 2476-2481.
    • (1994) IEEE-ICNN , pp. 2476-2481
    • Renders, J.M.1    Saerens, M.2    Bersini, H.3
  • 18
    • 67349250149 scopus 로고    scopus 로고
    • Automatique fréquentielle : Des critères graphiques à l'optimisation LMI. RS-JESA-37
    • Scorletti G., Fromion V., Font S., 2003. Automatique fréquentielle : des critères graphiques à l'optimisation LMI. RS-JESA-37. Analyse et commande des systèmes, pp. 161-185.
    • (2003) Analyse et commande des systèmes , pp. 161-185
    • Scorletti, G.1    Fromion, V.2    Font, S.3
  • 19
    • 49149116558 scopus 로고    scopus 로고
    • Tennessee Eastman plant simulation with base control system of McAvoy and Ye
    • Department of Chemical Engineering, University of California, Santa Barbara, USA
    • Singhal, A., 2000. Tennessee Eastman plant simulation with base control system of McAvoy and Ye., Research report, Department of Chemical Engineering, University of California, Santa Barbara, USA.
    • (2000) Research report
    • Singhal, A.1
  • 20
    • 1842507902 scopus 로고    scopus 로고
    • A dynamic recurrent neural network-based controller for a rigid-flexible manipulator system
    • Tian L., and Collins C. A dynamic recurrent neural network-based controller for a rigid-flexible manipulator system. Mechatronics 14 (2004) 471-490
    • (2004) Mechatronics , vol.14 , pp. 471-490
    • Tian, L.1    Collins, C.2
  • 21
    • 0035493375 scopus 로고    scopus 로고
    • Adaptive recurrent neural network control for linear induction motor
    • Wai R.J., and Lin F.J. Adaptive recurrent neural network control for linear induction motor. IEEE Transactions on Aerospace and Electronic Systems 37 4 (2001) 1176-1192
    • (2001) IEEE Transactions on Aerospace and Electronic Systems , vol.37 , Issue.4 , pp. 1176-1192
    • Wai, R.J.1    Lin, F.J.2
  • 22
    • 0034283719 scopus 로고    scopus 로고
    • Enhancing the estimation of plant Jacobian for adaptive neural inverse control
    • Wang D., and Bao P. Enhancing the estimation of plant Jacobian for adaptive neural inverse control. Neurocomputing 34 (2000) 99-115
    • (2000) Neurocomputing , vol.34 , pp. 99-115
    • Wang, D.1    Bao, P.2
  • 23
    • 0142011704 scopus 로고    scopus 로고
    • Sensitivity identification enhanced control strategy for nonlinear process systems
    • Wang J. Sensitivity identification enhanced control strategy for nonlinear process systems. Computers and Chemical Engineering 27 (2003) 1631-1640
    • (2003) Computers and Chemical Engineering , vol.27 , pp. 1631-1640
    • Wang, J.1
  • 24
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams R.J., and Zipser D. A learning algorithm for continually running fully recurrent neural networks. Neural Computation 1 2 (1989) 270-280
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 25
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Chauvin Y., and Rumelhart D.E. (Eds), Lawrence Erlbaum Publishers, Hillsdale, NJ
    • Williams R.J., and Zipser D. Gradient-based learning algorithms for recurrent networks and their computational complexity. In: Chauvin Y., and Rumelhart D.E. (Eds). Back-propagation: Theory, Architectures and Applications (1995), Lawrence Erlbaum Publishers, Hillsdale, NJ 433-486
    • (1995) Back-propagation: Theory, Architectures and Applications , pp. 433-486
    • Williams, R.J.1    Zipser, D.2
  • 26
    • 0029203638 scopus 로고
    • Multi-objective control of the Tennessee Eastman Challenge Process
    • Seattle, Washington, USA
    • Yan, N., Ricker, N.L., 1995. Multi-objective control of the Tennessee Eastman Challenge Process. In: Proceedings of the ACC, Seattle, Washington, USA.
    • (1995) Proceedings of the ACC
    • Yan, N.1    Ricker, N.L.2
  • 27
    • 0030661181 scopus 로고    scopus 로고
    • On-line optimisation of the Tennessee Eastaman Challenge Process
    • Albuquerque, New Mexico, USA
    • Yan, N., Ricker, N.L., 1997. On-line optimisation of the Tennessee Eastaman Challenge Process. In: Proceedings of the ACC, Albuquerque, New Mexico, USA.
    • (1997) Proceedings of the ACC
    • Yan, N.1    Ricker, N.L.2
  • 28
    • 0037438575 scopus 로고    scopus 로고
    • Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks
    • Yeh T.-M., Huang M.-C., and Huang C.-T. Estimate of process compositions and plantwide control from multiple secondary measurements using artificial neural networks. Computers and Chemical Engineering 27 (2003) 55-72
    • (2003) Computers and Chemical Engineering , vol.27 , pp. 55-72
    • Yeh, T.-M.1    Huang, M.-C.2    Huang, C.-T.3
  • 30
    • 67349241672 scopus 로고    scopus 로고
    • Robust stability analysis for indirect neural adaptive control
    • Glasgow, Scotland, UK
    • Zerkaoui, S., Druaux, F., Leclercq, E., Lefebvre, D., 2006. Robust stability analysis for indirect neural adaptive control. In: Proceedings of the ICC, Glasgow, Scotland, UK.
    • (2006) Proceedings of the ICC
    • Zerkaoui, S.1    Druaux, F.2    Leclercq, E.3    Lefebvre, D.4
  • 31
    • 0032162973 scopus 로고    scopus 로고
    • An adaptive tracking controller using neural networks for a class of nonlinear systems
    • Zhihong M., Wu H.R., and Palaniswami M. An adaptive tracking controller using neural networks for a class of nonlinear systems. IEEE Transactions on Neural Networks 9 5 (1998) 947-955
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.5 , pp. 947-955
    • Zhihong, M.1    Wu, H.R.2    Palaniswami, M.3
  • 32
    • 0012061123 scopus 로고
    • A subgrouping strategy that reduces complexity and seeds up learning in recurrent networks
    • Zipser D. A subgrouping strategy that reduces complexity and seeds up learning in recurrent networks. Neural Computation 1 (1989) 552-558
    • (1989) Neural Computation , vol.1 , pp. 552-558
    • Zipser, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.