-
1
-
-
33646126286
-
-
Reviews: a
-
Reviews: (a) Phillips, D. R.; Rasbery, J. M.; Bartel, B.; Matsuda, S. P. T. Curr. Opin. Plant Biol. 2006, 9. 305-314
-
(2006)
Curr. Opin. Plant Biol
, vol.9
, pp. 305-314
-
-
Phillips, D.R.1
Rasbery, J.M.2
Bartel, B.3
Matsuda, S.P.T.4
-
2
-
-
36349025257
-
-
(b) Abe, I. Nat. Prod. Rep. 2007, 24, 1311-1331
-
(2007)
Nat. Prod. Rep
, vol.24
, pp. 1311-1331
-
-
Abe, I.1
-
3
-
-
0001253959
-
-
(c) Wendt, K. U.; Schulz, G. E.; Corey, E. J.; Liu, D. R. Angew. Chem., Int. Ed. 2000, 39, 2812-2833
-
(2000)
Angew. Chem., Int. Ed
, vol.39
, pp. 2812-2833
-
-
Wendt, K.U.1
Schulz, G.E.2
Corey, E.J.3
Liu, D.R.4
-
4
-
-
0742307297
-
-
(d) Xu, R.; Fazio, G. C.; Matsuda, S. P. T. Phytochemistry 2004, 65, 261-290.
-
(2004)
Phytochemistry
, vol.65
, pp. 261-290
-
-
Xu, R.1
Fazio, G.C.2
Matsuda, S.P.T.3
-
7
-
-
47049090975
-
-
(b) Shan, H.; Wilson, W. K.; Phillips, D. R.; Bartel, B.; Matsuda, S. P. T. Org. Lett. 2008, 10, 1897-1900.
-
(2008)
Org. Lett
, vol.10
, pp. 1897-1900
-
-
Shan, H.1
Wilson, W.K.2
Phillips, D.R.3
Bartel, B.4
Matsuda, S.P.T.5
-
8
-
-
0033610475
-
-
Hart, E. A.; Hua, L.; Darr, L. B.; Wilson, W. K.; Pang, 1; Matsuda, S. P. T. J. Am. Chem. Soc. 1999, 121, 9887-9888.
-
(a) Hart, E. A.; Hua, L.; Darr, L. B.; Wilson, W. K.; Pang, 1; Matsuda, S. P. T. J. Am. Chem. Soc. 1999, 121, 9887-9888.
-
-
-
-
9
-
-
67149089683
-
-
For details, see: b, Ph.D. Thesis, Rice University
-
For details, see: (b) Hua, L. Ph.D. Thesis, Rice University, 2000, 76.
-
(2000)
, pp. 76
-
-
Hua, L.1
-
10
-
-
0029944635
-
-
Corey, E. J.; Matsuda, S. P. T.; Baker, C. H.; Ting, A. Y.; Cheng, H. Biochem. Biophys. Res. Commun. 1996, 219, 327-331.
-
(1996)
Biochem. Biophys. Res. Commun
, vol.219
, pp. 327-331
-
-
Corey, E.J.1
Matsuda, S.P.T.2
Baker, C.H.3
Ting, A.Y.4
Cheng, H.5
-
11
-
-
67149089682
-
-
Because metabolism can sometimes bias in vivo product profiles, in vitro reactions are generally preferred for quantitating cyclase products. We turned to in vivo studies because various in vitro experiments with PEN3 failed to generate detectable triterpene products.
-
Because metabolism can sometimes bias in vivo product profiles, in vitro reactions are generally preferred for quantitating cyclase products. We turned to in vivo studies because various in vitro experiments with PEN3 failed to generate detectable triterpene products.
-
-
-
-
12
-
-
34548757971
-
-
Lodeiro, S.; Xiong, Q.; Wilson, W. K.; Kolesnikova, M. D.; Onak, C. S.; Matsuda, S. P. T. J. Am. Chem. Soc. 2007, 129, 11213-11222.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 11213-11222
-
-
Lodeiro, S.1
Xiong, Q.2
Wilson, W.K.3
Kolesnikova, M.D.4
Onak, C.S.5
Matsuda, S.P.T.6
-
13
-
-
67149084995
-
-
Goad, L. J.; Akihisa, T. Analysis of Sterols; Blackie (Chapman & Hall): London 1997; appendix 3, pp 406-410.
-
Goad, L. J.; Akihisa, T. Analysis of Sterols; Blackie (Chapman & Hall): London 1997; appendix 3, pp 406-410.
-
-
-
-
14
-
-
67149106188
-
-
Hidesaki, T, Miyake, A, Tabata, T, Mitsui Chemicals) Jpn. Kokai Tokkyo Koho 2005052009, 2005 Chem. Abstr. 2005, 142, 275994
-
Hidesaki, T.; Miyake, A.; Tabata, T. (Mitsui Chemicals) Jpn. Kokai Tokkyo Koho 2005052009, 2005 (Chem. Abstr. 2005, 142, 275994).
-
-
-
-
15
-
-
0034718068
-
-
Kushiro, T.; Shibuya, M.; Masuda, K.; Ebizuka, Y. J. Am. Chem. Soc. 2000, 122, 6816-6824.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 6816-6824
-
-
Kushiro, T.1
Shibuya, M.2
Masuda, K.3
Ebizuka, Y.4
-
16
-
-
84868972048
-
-
Interferences in the NMR and GC-MS spectra may have obscured additional minor products (including possible monocycles and pentacycles) formed at a level of ∼1% or less.
-
Interferences in the NMR and GC-MS spectra may have obscured additional minor products (including possible monocycles and pentacycles) formed at a level of ∼1% or less.
-
-
-
-
17
-
-
84868975824
-
-
Cyclase accuracy was assessed as the ratio of the primary product to the second most abundant product (P1/P2) or to total products P1/σPi, as described in ref 7
-
i), as described in ref 7.
-
-
-
-
18
-
-
34250682615
-
-
(a) Kolesnikova, M. D.; Obermeyer, A. C.; Wilson, W. K.; Lynch, D. A.; Xiong, Q.; Matsuda, S. P. T. Org. Lett. 2007, 9, 2183-2186
-
(2007)
Org. Lett
, vol.9
, pp. 2183-2186
-
-
Kolesnikova, M.D.1
Obermeyer, A.C.2
Wilson, W.K.3
Lynch, D.A.4
Xiong, Q.5
Matsuda, S.P.T.6
-
19
-
-
33746153480
-
-
(b) Xiang, T.; Shibuya, M.; Katsube, Y.; Tsutsumi, T.; Otsuka, M.; Zhang, H.; Masuda, K.; Ebizuka, Y. Org. Lett. 2006, 8, 2835-2838,
-
(2006)
Org. Lett
, vol.8
, pp. 2835-2838
-
-
Xiang, T.1
Shibuya, M.2
Katsube, Y.3
Tsutsumi, T.4
Otsuka, M.5
Zhang, H.6
Masuda, K.7
Ebizuka, Y.8
-
20
-
-
57649104874
-
-
Shibuya, M.; Katsube, Y.; Otsuka, M.; Zhang, H.; Tansakul, P.; Xiang, T.; Ebizuka, Y. Plant Physiol. Biochem. 2009, 47, 26-30.
-
(2009)
Plant Physiol. Biochem
, vol.47
, pp. 26-30
-
-
Shibuya, M.1
Katsube, Y.2
Otsuka, M.3
Zhang, H.4
Tansakul, P.5
Xiang, T.6
Ebizuka, Y.7
-
21
-
-
22144482368
-
-
Xiong, Q.; Rocco, R.; Wilson, W. K.; Xu, R.; Ceruti, M.; Matsuda, S. P. T. J. Org. Chem. 2005, 70, 5362-5375.
-
(2005)
J. Org. Chem
, vol.70
, pp. 5362-5375
-
-
Xiong, Q.1
Rocco, R.2
Wilson, W.K.3
Xu, R.4
Ceruti, M.5
Matsuda, S.P.T.6
-
22
-
-
0031709419
-
-
These alternatives are exemplified in squalene cyclases and their mutants: (a) Pale-Grosdemange, C.; Feil, C.; Rohmer, M.; Poralla, K. Angew. Chem., Int. Ed. 1998, 37, 2237-2240
-
These alternatives are exemplified in squalene cyclases and their mutants: (a) Pale-Grosdemange, C.; Feil, C.; Rohmer, M.; Poralla, K. Angew. Chem., Int. Ed. 1998, 37, 2237-2240
-
-
-
-
24
-
-
56949086913
-
-
(c) Shinozaki, J.; Shibuya, M.; Masuda, K.; Ebizuka, Y. Phytochemistry 2008, 69, 2559-2564.
-
(2008)
Phytochemistry
, vol.69
, pp. 2559-2564
-
-
Shinozaki, J.1
Shibuya, M.2
Masuda, K.3
Ebizuka, Y.4
-
25
-
-
8544273685
-
-
Shape of the lanosterol substrate in the active-site cavity of a lanosterol synthase crystal structure: (a) Thoma, R, Schulz-Gasch, T, D'Arcy, B, Benz, J, Aebi, J, Dehmlow, H, Hennig, M, Stihle, M, Ruf, A. Nature 2004, 432, 118-122
-
Shape of the lanosterol substrate in the active-site cavity of a lanosterol synthase crystal structure: (a) Thoma, R.; Schulz-Gasch, T.; D'Arcy, B.; Benz, J.; Aebi, J.; Dehmlow, H.; Hennig, M.; Stihle, M.; Ruf, A. Nature 2004, 432, 118-122.
-
-
-
-
26
-
-
64049095850
-
-
11portion of the side chain: (b) Lodeiro, S.; Xiong, Q.; Wilson, W. K.; Ivanova, Y.; Smith, M. L.; May, G. S.; Matsuda, S. P. T. Org. Lett. 2009, 11, 1241-1244.
-
11portion of the side chain: (b) Lodeiro, S.; Xiong, Q.; Wilson, W. K.; Ivanova, Y.; Smith, M. L.; May, G. S.; Matsuda, S. P. T. Org. Lett. 2009, 11, 1241-1244.
-
-
-
-
27
-
-
33645216534
-
-
Matsuda, S. P. T.; Wilson, W. K.; Xiong, Q. Org. Biomol. Chem. 2006, 4, 530-543.
-
(2006)
Org. Biomol. Chem
, vol.4
, pp. 530-543
-
-
Matsuda, S.P.T.1
Wilson, W.K.2
Xiong, Q.3
-
28
-
-
84981462495
-
-
(a) Eschenmoser, A.; Ruzicka, L.; Jeger, O.; Arigoni, D. Helv. Chim. Acta 1955, 38, 1890-1904
-
(1955)
Helv. Chim. Acta
, vol.38
, pp. 1890-1904
-
-
Eschenmoser, A.1
Ruzicka, L.2
Jeger, O.3
Arigoni, D.4
-
30
-
-
67149128745
-
-
In these papers, the pathway fork leading to 20R and 20S isomers (IIIb and IIIa) derives from different conformations of a 6-membered D-ring intermediate that incorporates a bridged C17-C20-C13 cation (chair form) or a C17-C20-C16 cation boat form, The Supporting Information contains a side-by-side comparison of this mechanism with that of Figure 3
-
(c) In these papers, the pathway fork leading to 20R and 20S isomers (IIIb and IIIa) derives from different conformations of a 6-membered D-ring intermediate that incorporates a bridged C17-C20-C13 cation (chair form) or a C17-C20-C16 cation (boat form). The Supporting Information contains a side-by-side comparison of this mechanism with that of Figure 3.
-
-
-
-
31
-
-
0037312874
-
-
An HPLC-UV chromatogram of LUP5 products showed a ∼4:4:1 ratio of three major triterpenes, one of which was identified as 2: (a) Ebizuka, Y, Katsube, Y, Tsutsumi, T, Kushiro, T, Shibuya, M. Pure Appl. Chem. 2003, 75, 369-374
-
An HPLC-UV chromatogram of LUP5 products showed a ∼4:4:1 ratio of three major triterpenes, one of which was identified as 2: (a) Ebizuka, Y.; Katsube, Y.; Tsutsumi, T.; Kushiro, T.; Shibuya, M. Pure Appl. Chem. 2003, 75, 369-374
-
-
-
-
32
-
-
84868965481
-
-
Our preliminary NMR and GC-MS analyses of LUP5 products indicated a ∼2:2:1 of 2, 5, and 8, with minor products including 3, 4, and 6 see the Supporting Information
-
(b) Our preliminary NMR and GC-MS analyses of LUP5 products indicated a ∼2:2:1 of 2, 5, and 8, with minor products including 3, 4, and 6 (see the Supporting Information).
-
-
-
-
33
-
-
67149108743
-
-
Human lanosterol synthase residue numbering is used herein
-
Human lanosterol synthase residue numbering is used herein.
-
-
-
-
34
-
-
0035111648
-
-
Elucidation of the PEN and LUP clades
-
Elucidation of the PEN and LUP clades: Husselstein-Muller, T.; Schaller, H.; Benveniste, P. Plant Mol. Biol. 2001, 45, 75-92.
-
(2001)
Plant Mol. Biol
, vol.45
, pp. 75-92
-
-
Husselstein-Muller, T.1
Schaller, H.2
Benveniste, P.3
-
35
-
-
84868975820
-
-
Some cyclases containing F696 (F601 in squalene-hopene cyclase) make tetracyclic intermediates or products with a 17α side chain, e.g., tirucalla-7,24-dienol synthase in Ailanthus altissima (ref 9) and squalene-hopene cyclase (ref lc, Figure 20 and ref 16b, Figure 3).
-
Some cyclases containing F696 (F601 in squalene-hopene cyclase) make tetracyclic intermediates or products with a 17α side chain, e.g., tirucalla-7,24-dienol synthase in Ailanthus altissima (ref 9) and squalene-hopene cyclase (ref lc, Figure 20 and ref 16b, Figure 3).
-
-
-
|