-
2
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. Yu, & J. Han, Mining concept-drifting data streams using ensemble classifiers, Proc. of KDD, 2003.
-
(2003)
Proc. of KDD
-
-
Wang, H.1
Fan, W.2
Yu, P.3
Han, J.4
-
3
-
-
77954439407
-
Schema-based scheduling of event processors and buffer minimization for queries on structured data streams
-
C. Koch, S. Scherzinger, N. Schweikardt, & B. Stegmaier, Schema-based scheduling of event processors and buffer minimization for queries on structured data streams. Proceedings of VLDB 2004.
-
(2004)
Proceedings of VLDB
-
-
Koch, C.1
Scherzinger, S.2
Schweikardt, N.3
Stegmaier, B.4
-
4
-
-
0002099921
-
Clustering data streams
-
S. Guha, N. Milshra, R. Motwani, & L. O'Callaghan, Clustering data streams, Proc. of FOCS, 2000.
-
(2000)
Proc. of FOCS
-
-
Guha, S.1
Milshra, N.2
Motwani, R.3
O'Callaghan, L.4
-
5
-
-
19544377965
-
Moment: Maintaining closed frequent itemsets over a stream sliding window data streams
-
Y. Chi, H. Wang, P. Yu, & R. Muntz, Moment: Maintaining closed frequent itemsets over a stream sliding window data streams, Proc. of ICDM 2004.
-
(2004)
Proc. of ICDM
-
-
Chi, Y.1
Wang, H.2
Yu, P.3
Muntz, R.4
-
6
-
-
33749559199
-
Suppressing model overfitting in mining concept-drifting data streams
-
H. Wang, J. Yin, J. Pei, P. Yu, & J. Yu, Suppressing model overfitting in mining concept-drifting data streams, Proc. of KDD, 2006.
-
(2006)
Proc. of KDD
-
-
Wang, H.1
Yin, J.2
Pei, J.3
Yu, P.4
Yu, J.5
-
7
-
-
32344442287
-
Combining proactive and reactive predictions of data streams
-
Y. Yang, X. Wu, & X. Zhu, Combining proactive and reactive predictions of data streams, Proc. of KDD, 2005.
-
(2005)
Proc. of KDD
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
8
-
-
0346660758
-
A streaming ensemble algorithm (SEA) for large-scale classification
-
W. Street & Y. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, Proc. of KDD, 2001.
-
(2001)
Proc. of KDD
-
-
Street, W.1
Kim, Y.2
-
9
-
-
19544387592
-
Decision tree evolution using limited number of labeled data items from drifting data streams
-
W. Fan, Y. Huang, P. Yu, Decision tree evolution using limited number of labeled data items from drifting data streams, Proc. of ICDM 2004.
-
(2004)
Proc. of ICDM
-
-
Fan, W.1
Huang, Y.2
Yu, P.3
-
10
-
-
49749096940
-
-
W. Fan, Y. Huang, H. Wang, & P. Yu, Active mining of data streams, Prof. of SDM 2004.
-
W. Fan, Y. Huang, H. Wang, & P. Yu, Active mining of data streams, Prof. of SDM 2004.
-
-
-
-
11
-
-
0028424239
-
Improving Generalization with Active Learning
-
D. Cohn, L. Atlas, R. Ladner, Improving Generalization with Active Learning, Machine Learning 15(2), 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
14
-
-
33749263388
-
Batch mode active learning and its application to medical image classification
-
S. Hoi, R. Jin, J. Zhu, & M. Lyu, Batch mode active learning and its application to medical image classification, Proc. of ICML, 2006.
-
(2006)
Proc. of ICML
-
-
Hoi, S.1
Jin, R.2
Zhu, J.3
Lyu, M.4
-
15
-
-
0030365938
-
Error correlation and error reduction in ensemble classifier
-
K. Tumer & J. Ghosh, Error correlation and error reduction in ensemble classifier, Connection Science, 8(3-4), 1996.
-
(1996)
Connection Science
, vol.8
, Issue.3-4
-
-
Tumer, K.1
Ghosh, J.2
-
19
-
-
49749087351
-
-
J. Quinlan, C4.5: Programs for Machine learning, M. Kaufmann, 1993.
-
J. Quinlan, C4.5: Programs for Machine learning, M. Kaufmann, 1993.
-
-
-
-
20
-
-
19544372918
-
Class Noise vs. Attribute Noise: A Quantitative study of their impacts
-
Zhu X., & Wu X., Class Noise vs. Attribute Noise: A Quantitative study of their impacts, Artificial Intelligence Review, 22, 2004.
-
(2004)
Artificial Intelligence Review
, vol.22
-
-
Zhu, X.1
Wu, X.2
|