-
5
-
-
20444493774
-
-
P. G. Piva G. A. DiLabio J. L. Pitters J. Zikovsky M. Rezeq S. Dogel W. A. Hofer R. A. Wolkow Nature 2005 435 658
-
(2005)
Nature
, vol.435
, pp. 658
-
-
Piva, P.G.1
Dilabio, G.A.2
Pitters, J.L.3
Zikovsky, J.4
Rezeq, M.5
Dogel, S.6
Hofer, W.A.7
Wolkow, R.A.8
-
12
-
-
33644973250
-
-
S. R. Schofield N. J. Curson O. Warschkow N. A. Marks H. F. Wilson M. Y. Simmons P. V. Smith M. Y. Radny D. R. McKenzie R. G. Clark J. Phys. Chem. B 2006 110 3173
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 3173
-
-
Schofield, S.R.1
Curson, N.J.2
Warschkow, O.3
Marks, N.A.4
Wilson, H.F.5
Simmons, M.Y.6
Smith, P.V.7
Radny, M.Y.8
McKenzie, D.R.9
Clark, R.G.10
-
31
-
-
11244282931
-
-
Gaussian, Inc., Wallingford, CT
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision D.01), Gaussian, Inc., Wallingford, CT, 2004
-
(2004)
GAUSSIAN 03 (Revision D.01)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, Jr.J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.G.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
-
34
-
-
64549150831
-
-
In this notation, the two levels of theory used for final energy evaluation and for geometry optimization are separated by a double-slash ('//'). In the definition of a single level of theory, a single slash ('/') separates the choice of method (DFT, Hartree-Fock, etc) and the basis set. For example, B3LYP/BS2//PW91/BS1 denotes that a structure is geometry optimized using the PW91 functional and the BS1 basis set. The final energy at the optimized geometry is evaluated using the B3LYP functional and the BS2 basis set
-
In this notation, the two levels of theory used for final energy evaluation and for geometry optimization are separated by a double-slash ('//'). In the definition of a single level of theory, a single slash ('/') separates the choice of method (DFT, Hartree-Fock, etc) and the basis set. For example, B3LYP/BS2//PW91/BS1 denotes that a structure is geometry optimized using the PW91 functional and the BS1 basis set. The final energy at the optimized geometry is evaluated using the B3LYP functional and the BS2 basis set
-
-
-
-
41
-
-
64549150415
-
-
In the datively bonded carbonyl structures A1, C1, and C2, the carbon-oxygen bond lengths are calculated to be 1.250, 1.306, and 1.268 Å, respectively, consistent with a carbonyl double bond. For structures B1, B2, and D1 to D4, the carbon-oxygen bond lengths range from 1.369 Å (structure B1) to 1.392 Å (structure D3) in line with a C-O single bond
-
In the datively bonded carbonyl structures A1, C1, and C2, the carbon-oxygen bond lengths are calculated to be 1.250, 1.306, and 1.268 Å, respectively, consistent with a carbonyl double bond. For structures B1, B2, and D1 to D4, the carbon-oxygen bond lengths range from 1.369 Å (structure B1) to 1.392 Å (structure D3) in line with a C-O single bond
-
-
-
|