메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 591-622

NEUROSVM: An architecture to reduce the effect of the choice of kernel on the performance of SVM

Author keywords

Averaging; Feature extraction; Hybrid system; Majority voting; Neural networks (NNs); Support vector machines (SVMs)

Indexed keywords

AVERAGING; BENCHMARK DATUM; ENSEMBLE METHODS; HYBRID ARCHITECTURES; INPUT SPACES; MAJORITY VOTING; MULTI LAYERS; MULTI-LAYERED; NON-LINEAR; PERCEPTRON; PROPOSED ARCHITECTURES; SUB-MODULES; SUPPORT VECTOR MACHINES (SVMS);

EID: 64149128446     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (27)

References (42)
  • 1
    • 33751033588 scopus 로고    scopus 로고
    • Optimizing resources in model selection for support vector machine
    • M. M, Adankon and M. Cheriet. Optimizing resources in model selection for support vector machine. Pattern Recognition, 40(3):953-963, 2007.
    • (2007) Pattern Recognition , vol.40 , Issue.3 , pp. 953-963
    • Adankon, M.M.1    Cheriet, M.2
  • 8
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20(3):273-297, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 0000259511 scopus 로고    scopus 로고
    • Approximation statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximation statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7): 1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 12
    • 0141702561 scopus 로고    scopus 로고
    • K. S. Guimaraes, J. C. B. Melo, and G. D. C. Cavalcanti. Combining few neural networks for effective secondary structure prediction. In Proceedings of the IEEE Symposium on Bioinformatics and BioEngineering (BIBE'03), pages 415-420, 2003.
    • K. S. Guimaraes, J. C. B. Melo, and G. D. C. Cavalcanti. Combining few neural networks for effective secondary structure prediction. In Proceedings of the IEEE Symposium on Bioinformatics and BioEngineering (BIBE'03), pages 415-420, 2003.
  • 13
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: Comparison of five meta machine learning methods
    • J. V. Hansen. Combining predictors: comparison of five meta machine learning methods. Information Sciences, 119(1-2):91-105, 1999.
    • (1999) Information Sciences , vol.119 , Issue.1-2 , pp. 91-105
    • Hansen, J.V.1
  • 14
    • 0028563264 scopus 로고
    • Design and evolution of modular neural network architectures
    • B. Happel and J. Murre. Design and evolution of modular neural network architectures. Neural Networks, 7(6-7):985-1004, 1994.
    • (1994) Neural Networks , vol.7 , Issue.6-7 , pp. 985-1004
    • Happel, B.1    Murre, J.2
  • 17
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Md. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training cooperative neural network ensembles. IEEE Trans. on Neural Networks, 14(4):820-834, 2003.
    • (2003) IEEE Trans. on Neural Networks , vol.14 , Issue.4 , pp. 820-834
    • Islam, M.M.1    Yao, X.2    Murase, K.3
  • 18
    • 0027634760 scopus 로고
    • A simplified neural network solution through problem decomposition: The case of the truck backer-upper
    • R, E, Jenkins and B. P. Yuhas. A simplified neural network solution through problem decomposition: The case of the truck backer-upper. IEEE Trans. on Neural Networks, 4(4):718-720, 1993.
    • (1993) IEEE Trans. on Neural Networks , vol.4 , Issue.4 , pp. 718-720
    • Jenkins, R.E.1    Yuhas, B.P.2
  • 22
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2):181-207, 2003.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 23
  • 24
    • 13844267721 scopus 로고    scopus 로고
    • Face recognition using modular neural networks and the fuzzy sugeno integral for response integration
    • P. Melin, C. Felix, and O. Castillo. Face recognition using modular neural networks and the fuzzy sugeno integral for response integration. International Journal of Intelligent Systems, 20(2):275- 291, 2005.
    • (2005) International Journal of Intelligent Systems , vol.20 , Issue.2 , pp. 275-291
    • Melin, P.1    Felix, C.2    Castillo, O.3
  • 26
    • 33646518768 scopus 로고    scopus 로고
    • Lidar detection of underwater objects using a neuro-svmbased architecture
    • V. Mitra, C-J. Wang, and S. Banerjee. Lidar detection of underwater objects using a neuro-svmbased architecture. IEEE Trans. on Neural Networks, 17(3):717-731, 2006.
    • (2006) IEEE Trans. on Neural Networks , vol.17 , Issue.3 , pp. 717-731
    • Mitra, V.1    Wang, C.-J.2    Banerjee, S.3
  • 28
    • 14944343430 scopus 로고    scopus 로고
    • Multi-class support vector machines for protein secondary structure prediction
    • M. N. Nguyen and J. C. Rajapakse. Multi-class support vector machines for protein secondary structure prediction. Genome Informatics, 14:218-227,2003.
    • (2003) Genome Informatics , vol.14 , pp. 218-227
    • Nguyen, M.N.1    Rajapakse, J.C.2
  • 29
    • 0442279715 scopus 로고    scopus 로고
    • Sofm-mlp: A hybrid neural network for atmospheric temperature prediction
    • N. R. Pal, S. Pal, J. Das, and K. Majumder. Sofm-mlp: A hybrid neural network for atmospheric temperature prediction. IEEE Trans. Geoscience and Remote Sensing, 41(12):2783-2791, 2003.
    • (2003) IEEE Trans. Geoscience and Remote Sensing , vol.41 , Issue.12 , pp. 2783-2791
    • Pal, N.R.1    Pal, S.2    Das, J.3    Majumder, K.4
  • 30
    • 33645342233 scopus 로고    scopus 로고
    • On identifying marker genes from gene expression data in a neural framework through online feature analysis
    • N. R. Pal, A. Sharma, S. K. Sanadhya, and Karmeshu. On identifying marker genes from gene expression data in a neural framework through online feature analysis. International Journal of Intelligent Systems, 21(4):453-467, 2006.
    • (2006) International Journal of Intelligent Systems , vol.21 , Issue.4 , pp. 453-467
    • Pal, N.R.1    Sharma, A.2    Sanadhya, S.K.3    Karmeshu4
  • 31
    • 0032095724 scopus 로고    scopus 로고
    • Support vector machines for 3-d object recognition
    • M. Pontil and A. Verri. Support vector machines for 3-d object recognition. IEEE Trans. Pattern Anal. Machine Intell., 20(6):637-646, 1998.
    • (1998) IEEE Trans. Pattern Anal. Machine Intell , vol.20 , Issue.6 , pp. 637-646
    • Pontil, M.1    Verri, A.2
  • 33
    • 0005037327 scopus 로고
    • Modular Neural Networks: A State of the Art
    • Technical Report CSC-95026. Centre for System and Control. Faculty of Mechanical Engineering, University of Glasgow, UK
    • E. Ronco and P. Gawthrop. Modular Neural Networks: A State of the Art. Technical Report CSC-95026. Centre for System and Control. Faculty of Mechanical Engineering, University of Glasgow, UK, 1995.
    • (1995)
    • Ronco, E.1    Gawthrop, P.2
  • 35
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures. Machine Learning, 65 (1):247-271, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 40
    • 33750127404 scopus 로고    scopus 로고
    • Accuracy/diversity and ensemble mlp classifier design
    • T. Windeatt. Accuracy/diversity and ensemble mlp classifier design. IEEE Trans. on Neural Networks, 17(5): 1194-1211, 2006.
    • (2006) IEEE Trans. on Neural Networks , vol.17 , Issue.5 , pp. 1194-1211
    • Windeatt, T.1
  • 42
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • 137(l-2):239-263
    • Z-H. Zhou, J. Wu, and W. Tang. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137(l-2):239-263, 2002.
    • (2002) Artificial Intelligence
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.