메뉴 건너뛰기




Volumn , Issue , 2003, Pages 415-420

Combining few neural networks for effective secondary structure prediction

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; BIOINFORMATICS;

EID: 0141702561     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBE.2003.1188981     Document Type: Conference Paper
Times cited : (8)

References (24)
  • 3
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri, G., Exploiting the past and the future in protein secondary structure prediction, Bioinformatics, 15: 937-946, 1999.
    • (1999) Bioinformatics , vol.15 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 4
    • 0033106244 scopus 로고    scopus 로고
    • Evaluation and improvement of multiple sequence methods for protein secondary structure prediction
    • Cuff J. A. and Barton G.J., Evaluation and improvement of multiple sequence methods for protein secondary structure prediction, PROTEINS: Structure, Function and Genetics, 34:508-519, 1999.
    • (1999) PROTEINS: Structure, Function and Genetics , vol.34 , pp. 508-519
    • Cuff, J.A.1    Barton, G.J.2
  • 5
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden markov models (review)
    • Eddy, S. R., Profile hidden markov models (review), Bioinformatics, 14(9):755-763, 1998.
    • (1998) Bioinformatics , vol.14 , Issue.9 , pp. 755-763
    • Eddy, S.R.1
  • 6
    • 0030931336 scopus 로고    scopus 로고
    • Seventy-five percent accuracy in protein secondary structure prediction
    • Frishman, D., and Argos, P., Seventy-five percent accuracy in protein secondary structure prediction, Proteins, 27:329-335, 1997.
    • (1997) Proteins , vol.27 , pp. 329-335
    • Frishman, D.1    Argos, P.2
  • 7
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D. T., Protein secondary structure prediction based on position-specific scoring matrices, J. Mol. Biol., 292:195-202, 1999.
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 8
    • 0032438987 scopus 로고    scopus 로고
    • Hidden markov models for detecting remote protein homologies
    • Karplus, K., Barrett, C., and Hughey, R., Hidden markov models for detecting remote protein homologies, Bioinformatics, 14(10):846-856, 1998.
    • (1998) Bioinformatics , vol.14 , Issue.10 , pp. 846-856
    • Karplus, K.1    Barrett, C.2    Hughey, R.3
  • 9
    • 0020997912 scopus 로고
    • A dictionary of protein secondary structure
    • Kabsch, W. and Sander, C., A dictionary of protein secondary structure, Biopolymers, 22:2577-2637, 1983.
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 10
    • 0029804192 scopus 로고    scopus 로고
    • Identification and application of the concepts important for accurate and reliable protein secondary structure prediction
    • King, R., and Sternberg, M., Identification and application of the concepts important for accurate and reliable protein secondary structure prediction, Protein Sci., 5:2298-2310, 1996.
    • (1996) Protein Sci. , vol.5 , pp. 2298-2310
    • King, R.1    Sternberg, M.2
  • 12
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary strucure in three and eight classes using recurrent neural networks and profiles
    • G. Pollastri, G., Przybylski, D., Rost, B. and Baldi, P., Improving the Prediction of Protein Secondary Strucure in Three and Eight Classes Using Recurrent Neural Networks and Profiles, Proteins, 47:228-235, 2002.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 13
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian, N. and Sejnowski, T.J., Predicting the secondary structure of globular proteins using neural network models, J. Mol. Biol., 202:865-884, 1988.
    • (1988) J. Mol. Biol. , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 14
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • Riedmiller, M., and Braun, H., A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm, Proc. ICNN, 586-591, 1993.
    • (1993) Proc. ICNN , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 15
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • Riis, S. K. and Krogh, A., Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments, J. Comp. Biol., 3:163-183, 1996.
    • (1996) J. Comp. Biol. , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 16
    • 0035782925 scopus 로고    scopus 로고
    • Review: Protein secondary structure prediction continues to rise
    • Rost, B., Review: Protein secondary structure prediction continues to rise, J. Struct. Biol., 134:204-218, 2001.
    • (2001) J. Struct. Biol. , vol.134 , pp. 204-218
    • Rost, B.1
  • 17
    • 0029889988 scopus 로고    scopus 로고
    • PHD: Predicting one-dimensional protein structure by profile based neural networks
    • Rost, B., PHD: Predicting one-dimensional protein structure by profile based neural networks, Methods in Enzymology, 266:525-539, 1996.
    • (1996) Methods in Enzymology , vol.266 , pp. 525-539
    • Rost, B.1
  • 19
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost, B. and Sander, C., Prediction of protein secondary structure at better than 70% accuracy, J. Mol. Biol.,232:584-599, 1993.
    • (1993) J. Mol. Biol. , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 20
    • 0027169638 scopus 로고
    • Improved prediction of protein secondary structure by use of sequence profiles and neural networks
    • Rost, B. and Sander, C., Improved prediction of protein secondary structure by use of sequence profiles and neural networks, Proc. Natl. Acad. Sci. USA, 90:7558-7562, 1993.
    • (1993) Proc. Natl. Acad. Sci. USA , vol.90 , pp. 7558-7562
    • Rost, B.1    Sander, C.2
  • 21
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • Rost, B. and Sander, C., Combining evolutionary information and neural networks to predict protein secondary structure, Proteins, 19:55-72, 1994.
    • (1994) Proteins , vol.19 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 22
    • 0028064006 scopus 로고
    • Redefining the goals of protein secondary structure predictor
    • Rost, B., Sander, C., and Schneider, R., Redefining the goals of protein secondary structure predictor, J. Mol. Biol., 235:13-26, 1994.
    • (1994) J. Mol. Biol. , vol.235 , pp. 13-26
    • Rost, B.1    Sander, C.2    Schneider, R.3
  • 23
    • 0028965118 scopus 로고
    • Prediction of protein secondary structure by combining neares-neighbor algorithms and multiple sequence alignments
    • Salamov, A., and Solovyev, V., Prediction of protein secondary structure by combining neares-neighbor algorithms and multiple sequence alignments, J. Mol. Biol., 247: 11-15, 1995.
    • (1995) J. Mol. Biol. , vol.247 , pp. 11-15
    • Salamov, A.1    Solovyev, V.2
  • 24
    • 0026030641 scopus 로고
    • Database of homology-derived protein structures and the structural meaning of sequence alignment
    • Sander, C. and Achneider, R., Database of homology-derived protein structures and the structural meaning of sequence alignment, Proteins, 9(1): 56-68, 1991.
    • (1991) Proteins , vol.9 , Issue.1 , pp. 56-68
    • Sander, C.1    Achneider, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.