-
1
-
-
0039816976
-
Using local trajectory optimizers to speed up global optimization in dynamic programming
-
J.E. Hanson, S.J. Moody, R.P. Lippmann Eds, Morgan Kaufmann, Los Altos, CA
-
C.G. Atkeson, Using local trajectory optimizers to speed up global optimization in dynamic programming, in: J.E. Hanson, S.J. Moody, R.P. Lippmann (Eds.), Advances in Neural Information Processing Systems, vol. 6, Morgan Kaufmann, Los Altos, CA, 1994, pp. 503-521.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 503-521
-
-
Atkeson, C.G.1
-
3
-
-
0002130986
-
Robot learning from demonstration
-
Fisher Jr. D.H. (Ed), Morgan Kaufmann, Nashville, TN, USA
-
Atkeson C.G., and Schaal S. Robot learning from demonstration. In: Fisher Jr. D.H. (Ed). Proceedings of the 14th International Conference on Machine Learning (July 1997), Morgan Kaufmann, Nashville, TN, USA 12-20
-
(1997)
Proceedings of the 14th International Conference on Machine Learning
, pp. 12-20
-
-
Atkeson, C.G.1
Schaal, S.2
-
4
-
-
0003787146
-
-
Princeton University Press, Princeton, NJ, USA
-
Bellman R.E. Dynamic Programming (1957), Princeton University Press, Princeton, NJ, USA
-
(1957)
Dynamic Programming
-
-
Bellman, R.E.1
-
5
-
-
61849143544
-
Dynamic Programming and Optimal Control
-
third ed, Athena Scientific, Belmont, MA, USA
-
D.P. Bertsekas, Dynamic Programming and Optimal Control, Optimization and Computation Series, vol. 1, third ed., Athena Scientific, Belmont, MA, USA, 2005.
-
(2005)
Optimization and Computation Series
, vol.1
-
-
Bertsekas, D.P.1
-
6
-
-
61849185818
-
Dynamic Programming and Optimal Control
-
third ed, Athena Scientific, Belmont, MA, USA
-
D.P. Bertsekas, Dynamic Programming and Optimal Control, Optimization and Computation Series, vol. 2, third ed., Athena Scientific, Belmont, MA, USA, 2007.
-
(2007)
Optimization and Computation Series
, vol.2
-
-
Bertsekas, D.P.1
-
7
-
-
0003487482
-
Neuro-Dynamic Programming
-
Athena Scientific, Belmont, MA, USA
-
Bertsekas D.P., and Tsitsiklis J.N. Neuro-Dynamic Programming. Optimization and Computation (1996), Athena Scientific, Belmont, MA, USA
-
(1996)
Optimization and Computation
-
-
Bertsekas, D.P.1
Tsitsiklis, J.N.2
-
8
-
-
0003507691
-
-
Hemisphere, New York City, NY, USA
-
Bryson A.E., and Ho Y.-C. Applied Optimal Control: Optimization, Estimation, and Control (1975), Hemisphere, New York City, NY, USA
-
(1975)
Applied Optimal Control: Optimization, Estimation, and Control
-
-
Bryson, A.E.1
Ho, Y.-C.2
-
9
-
-
84972528615
-
Bayesian experimental design: a review
-
Chaloner K., and Verdinelli I. Bayesian experimental design: a review. Statistical Science 10 (1995) 273-304
-
(1995)
Statistical Science
, vol.10
, pp. 273-304
-
-
Chaloner, K.1
Verdinelli, I.2
-
10
-
-
52449085771
-
Approximate dynamic programming with gaussian processes
-
Seattle, WA, USA, June
-
M.P. Deisenroth, J. Peters, C.E. Rasmussen, Approximate dynamic programming with gaussian processes, in: Proceedings of the 2008 American Control Conference, Seattle, WA, USA, June 2008, pp. 4480-4485.
-
(2008)
Proceedings of the 2008 American Control Conference
, pp. 4480-4485
-
-
Deisenroth, M.P.1
Peters, J.2
Rasmussen, C.E.3
-
11
-
-
61849106123
-
Model-based reinforcement learning with continuous states and actions
-
Bruges, Belgium, April
-
M.P. Deisenroth, C.E. Rasmussen, J. Peters, Model-based reinforcement learning with continuous states and actions, in: Proceedings of the 16th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 2008, pp. 19-24.
-
(2008)
Proceedings of the 16th European Symposium on Artificial Neural Networks
, pp. 19-24
-
-
Deisenroth, M.P.1
Rasmussen, C.E.2
Peters, J.3
-
12
-
-
0033629916
-
Reinforcement learning in continuous time and space
-
Doya K. Reinforcement learning in continuous time and space. Neural Computation 12 1 (2000) 219-245
-
(2000)
Neural Computation
, vol.12
, Issue.1
, pp. 219-245
-
-
Doya, K.1
-
13
-
-
1942421151
-
Bayes meets Bellman: The Gaussian process approach to temporal difference learning
-
Washington, DC, USA, August
-
Y. Engel, S. Mannor, R. Meir, Bayes meets Bellman: the Gaussian process approach to temporal difference learning, in: Proceedings of the 20th International Conference on Machine Learning, Washington, DC, USA, vol. 20, August 2003, pp. 154-161.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning
, vol.20
, pp. 154-161
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
14
-
-
31844451013
-
Reinforcement learning with Gaussian processes
-
Bonn, Germany, August
-
Y. Engel, S. Mannor, R. Meir, Reinforcement learning with Gaussian processes, in: Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, vol. 22, August 2005, pp. 201-208.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning
, vol.22
, pp. 201-208
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
16
-
-
84864065133
-
Bayesian policy gradient algorithms
-
Schölkopf B., Platt J.C., and Hoffman T. (Eds), The MIT Press, Cambridge, MA, USA
-
Ghavamzadeh M., and Engel Y. Bayesian policy gradient algorithms. In: Schölkopf B., Platt J.C., and Hoffman T. (Eds). Advances in Neural Information Processing Systems, vol. 19 (2007), The MIT Press, Cambridge, MA, USA 457-464
-
(2007)
Advances in Neural Information Processing Systems, vol. 19
, pp. 457-464
-
-
Ghavamzadeh, M.1
Engel, Y.2
-
17
-
-
84867040604
-
Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting
-
Becker S., Thrun S., and Obermayer K. (Eds), The MIT Press, Cambridge, MA, USA
-
Girard A., Rasmussen C.E., Quiñonero Candela J., and Murray-Smith R. Gaussian process priors with uncertain inputs-application to multiple-step ahead time series forecasting. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems, vol. 15 (2003), The MIT Press, Cambridge, MA, USA 529-536
-
(2003)
Advances in Neural Information Processing Systems, vol. 15
, pp. 529-536
-
-
Girard, A.1
Rasmussen, C.E.2
Quiñonero Candela, J.3
Murray-Smith, R.4
-
18
-
-
84880694195
-
Stable function approximation in dynamic programming
-
Prieditis A., and Russell S. (Eds), Morgan Kaufmann, San Francisco, CA, USA
-
Gordon G.J. Stable function approximation in dynamic programming. In: Prieditis A., and Russell S. (Eds). Proceedings of the 12th International Conference on Machine Learning (1995), Morgan Kaufmann, San Francisco, CA, USA 261-268
-
(1995)
Proceedings of the 12th International Conference on Machine Learning
, pp. 261-268
-
-
Gordon, G.J.1
-
21
-
-
21244437999
-
Unscented filtering and nonlinear estimation
-
Julier S.J., and Uhlmann J.K. Unscented filtering and nonlinear estimation. IEEE Review 92 3 (2004) 401-422
-
(2004)
IEEE Review
, vol.92
, Issue.3
, pp. 401-422
-
-
Julier, S.J.1
Uhlmann, J.K.2
-
22
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
Kalman R.E. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82 Series D (1960) 35-45
-
(1960)
Transactions of the ASME-Journal of Basic Engineering
, vol.82
, Issue.Series D
, pp. 35-45
-
-
Kalman, R.E.1
-
23
-
-
69549111759
-
Bayesian filtering using Gaussian process prediction and observation models
-
Nice, France, September
-
J. Ko, D. Fox, GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models, in: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, September 2008, pp. 3471-3476.
-
(2008)
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 3471-3476
-
-
Ko, J.1
Fox, D.2
BayesFilters, G.3
-
24
-
-
36348997154
-
Gaussian processes and reinforcement learning for identification and control of an autonomous blimp
-
Rome, Italy, April
-
J. Ko, D.J. Klein, D. Fox, D. Haehnel, Gaussian processes and reinforcement learning for identification and control of an autonomous blimp, in: Proceedings of the International Conference on Robotics and Automation, Rome, Italy, April 2007, pp. 742-747.
-
(2007)
Proceedings of the International Conference on Robotics and Automation
, pp. 742-747
-
-
Ko, J.1
Klein, D.J.2
Fox, D.3
Haehnel, D.4
-
25
-
-
51349131913
-
GP-UKF: Unscented Kalman filters with Gaussian process prediction and observation models
-
San Diego, CA, USA, October
-
J. Ko, D.J. Klein, D. Fox, D. Haehnel, GP-UKF: unscented Kalman filters with Gaussian process prediction and observation models, in: Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, October 2007, pp. 1901-1907.
-
(2007)
Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp. 1901-1907
-
-
Ko, J.1
Klein, D.J.2
Fox, D.3
Haehnel, D.4
-
26
-
-
84945567712
-
Predictive control with Gaussian process models
-
B. Zajc, M. Tkalčič Eds, Piscataway, NJ, USA, September
-
J. Kocijan, R. Murray-Smith, C.E. Rasmussen, B. Likar, Predictive control with Gaussian process models, in: B. Zajc, M. Tkalčič (Eds.), Proceedings of IEEE Region 8 Eurocon 2003: Computer as a Tool, Piscataway, NJ, USA, September 2003, pp. 352-356.
-
(2003)
Proceedings of IEEE Region 8 Eurocon 2003: Computer as a Tool
, pp. 352-356
-
-
Kocijan, J.1
Murray-Smith, R.2
Rasmussen, C.E.3
Likar, B.4
-
27
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
-
Krause A., Singh A., and Guestrin C. Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. Journal of Machine Learning Research 9 (2008) 235-284
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
28
-
-
51949083432
-
-
Ph.D. Thesis, Technische Universität Darmstadt, Germany, February
-
M. Kuss, Gaussian process models for robust regression, classification, and reinforcement learning, Ph.D. Thesis, Technische Universität Darmstadt, Germany, February 2006.
-
(2006)
Gaussian process models for robust regression, classification, and reinforcement learning
-
-
Kuss, M.1
-
29
-
-
0000695404
-
Information-based objective functions for active data selection
-
MacKay D.J.C. Information-based objective functions for active data selection. Neural Computation 4 (1992) 590-604
-
(1992)
Neural Computation
, vol.4
, pp. 590-604
-
-
MacKay, D.J.C.1
-
30
-
-
0000597408
-
Comparison of approximate methods for handling hyperparameters
-
MacKay D.J.C. Comparison of approximate methods for handling hyperparameters. Neural Computation 11 5 (1999) 1035-1068
-
(1999)
Neural Computation
, vol.11
, Issue.5
, pp. 1035-1068
-
-
MacKay, D.J.C.1
-
31
-
-
0004272772
-
-
Cambridge University Press, The Edinburgh Building, Cambridge, UK
-
MacKay D.J.C. Information Theory, Inference, and Learning Algorithms (2003), Cambridge University Press, The Edinburgh Building, Cambridge, UK
-
(2003)
Information Theory, Inference, and Learning Algorithms
-
-
MacKay, D.J.C.1
-
32
-
-
84959309936
-
Active policy learning for robot planning and exploration under uncertainty
-
Atlanta, GA, USA, June
-
R. Martinez-Cantin, N. de Freitas, A. Doucet, J. Castellanos, Active policy learning for robot planning and exploration under uncertainty, in: Proceedings of Robotics: Science and Systems III, Atlanta, GA, USA, June 2007.
-
(2007)
Proceedings of Robotics: Science and Systems
, vol.3
-
-
Martinez-Cantin, R.1
de Freitas, N.2
Doucet, A.3
Castellanos, J.4
-
33
-
-
0015764255
-
The intrinsic random functions and their applications
-
Matheron G. The intrinsic random functions and their applications. Advances in Applied Probability 5 (1973) 439-468
-
(1973)
Advances in Applied Probability
, vol.5
, pp. 439-468
-
-
Matheron, G.1
-
34
-
-
0038387331
-
-
Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, January
-
T.P. Minka, A family of algorithms for approximate Bayesian inference, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, January 2001.
-
(2001)
A family of algorithms for approximate Bayesian inference
-
-
Minka, T.P.1
-
35
-
-
84945582505
-
Nonlinear adaptive control using non-parametric Gaussian process prior models
-
Academic Press, Barcelona, Spain
-
Murray-Smith R., and Sbarbaro D. Nonlinear adaptive control using non-parametric Gaussian process prior models. Proceedings of the 15th IFAC World Congress vol. 15 (July 2002), Academic Press, Barcelona, Spain
-
(2002)
Proceedings of the 15th IFAC World Congress
, vol.15
-
-
Murray-Smith, R.1
Sbarbaro, D.2
-
36
-
-
79953133012
-
Adaptive, cautious, predictive control with Gaussian process priors
-
Rotterdam, Netherlands, August
-
R. Murray-Smith, D. Sbarbaro, C.E. Rasmussen, A. Girard, Adaptive, cautious, predictive control with Gaussian process priors, in: 13th IFAC Symposium on System Identification, Rotterdam, Netherlands, August 2003.
-
(2003)
13th IFAC Symposium on System Identification
-
-
Murray-Smith, R.1
Sbarbaro, D.2
Rasmussen, C.E.3
Girard, A.4
-
38
-
-
0036832956
-
Kernel-based reinforcement learning
-
Ormoneit D., and Sen S. Kernel-based reinforcement learning. Machine Learning 49 2-3 (2002) 161-178
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 161-178
-
-
Ormoneit, D.1
Sen, S.2
-
40
-
-
40649106649
-
Natural actor-critic
-
Peters J., and Schaal S. Natural actor-critic. Neurocomputing 71 7-9 (2008) 1180-1190
-
(2008)
Neurocomputing
, vol.71
, Issue.7-9
, pp. 1180-1190
-
-
Peters, J.1
Schaal, S.2
-
41
-
-
44949241322
-
Reinforcement learning of motor skills with policy gradients
-
Peters J., and Schaal S. Reinforcement learning of motor skills with policy gradients. Neural Networks 21 (2008) 682-697
-
(2008)
Neural Networks
, vol.21
, pp. 682-697
-
-
Peters, J.1
Schaal, S.2
-
42
-
-
33750297394
-
-
T. Pfingsten, Bayesian active learning for sensitivity analysis, in: Proceedings of the 17th European Conference on Machine Learning, September 2006, pp. 353-364.
-
T. Pfingsten, Bayesian active learning for sensitivity analysis, in: Proceedings of the 17th European Conference on Machine Learning, September 2006, pp. 353-364.
-
-
-
-
45
-
-
58449109750
-
Probabilistic inference for fast learning in control
-
S. Girgin, M. Loth, R. Munos, P. Preux, D. Ryabko Eds, Recent Advances in Reinforcement Learning, Springer, Berlin, November
-
C.E. Rasmussen, M.P. Deisenroth, Probabilistic inference for fast learning in control, in: S. Girgin, M. Loth, R. Munos, P. Preux, D. Ryabko (Eds.), Recent Advances in Reinforcement Learning, Lecture Notes on Computer Science, vol. 5323, Springer, Berlin, November 2008, pp. 229-242.
-
(2008)
Lecture Notes on Computer Science
, vol.5323
, pp. 229-242
-
-
Rasmussen, C.E.1
Deisenroth, M.P.2
-
46
-
-
84899013778
-
Bayesian Monte Carlo
-
Becker S., Thrun S., and Obermayer K. (Eds), The MIT Press, Cambridge, MA, USA
-
Rasmussen C.E., and Ghahramani Z. Bayesian Monte Carlo. In: Becker S., Thrun S., and Obermayer K. (Eds). Advances in Neural Information Processing Systems, vol. 15 (2003), The MIT Press, Cambridge, MA, USA 489-496
-
(2003)
Advances in Neural Information Processing Systems, vol. 15
, pp. 489-496
-
-
Rasmussen, C.E.1
Ghahramani, Z.2
-
47
-
-
84899026055
-
Gaussian processes in reinforcement learning
-
Thrun S., Saul L.K., and Schölkopf B. (Eds), The MIT Press, Cambridge, MA, USA
-
Rasmussen C.E., and Kuss M. Gaussian processes in reinforcement learning. In: Thrun S., Saul L.K., and Schölkopf B. (Eds). Advances in Neural Information Processing Systems, vol. 16 (2004), The MIT Press, Cambridge, MA, USA 751-759
-
(2004)
Advances in Neural Information Processing Systems, vol. 16
, pp. 751-759
-
-
Rasmussen, C.E.1
Kuss, M.2
-
48
-
-
34247621089
-
Gaussian processes for machine learning
-
The MIT Press, Cambridge, MA, USA URL 〈http://www.gaussianprocess.org/gpml/〉
-
Rasmussen C.E., and Williams C.K.I. Gaussian processes for machine learning. Adaptive Computation and Machine Learning (2006), The MIT Press, Cambridge, MA, USA. http://www.gaussianprocess.org/gpml/ URL 〈http://www.gaussianprocess.org/gpml/〉
-
(2006)
Adaptive Computation and Machine Learning
-
-
Rasmussen, C.E.1
Williams, C.K.I.2
-
49
-
-
0033233953
-
Concepts and facilities of a neural reinforcement learning control architecture for technical process control
-
Riedmiller M. Concepts and facilities of a neural reinforcement learning control architecture for technical process control. Neural Computation and Application 8 (2000) 323-338
-
(2000)
Neural Computation and Application
, vol.8
, pp. 323-338
-
-
Riedmiller, M.1
-
50
-
-
33646687423
-
Neural Fitted Q iteration-first experiences with a data efficient neural reinforcement learning method
-
Porto, Portugal
-
M. Riedmiller, Neural Fitted Q iteration-first experiences with a data efficient neural reinforcement learning method, in: Proceedings of the 16th European Conference on Machine Learning, Porto, Portugal, 2005.
-
(2005)
Proceedings of the 16th European Conference on Machine Learning
-
-
Riedmiller, M.1
-
52
-
-
84864038646
-
Sparse Gaussian processes using pseudo-inputs
-
Weiss Y., Schölkopf B., and Platt J.C. (Eds), The MIT Press, Cambridge, MA, USA
-
Snelson E., and Ghahramani Z. Sparse Gaussian processes using pseudo-inputs. In: Weiss Y., Schölkopf B., and Platt J.C. (Eds). Advances in Neural Information Processing Systems, vol. 18 (2006), The MIT Press, Cambridge, MA, USA 1257-1264
-
(2006)
Advances in Neural Information Processing Systems, vol. 18
, pp. 1257-1264
-
-
Snelson, E.1
Ghahramani, Z.2
-
53
-
-
4143121578
-
Reinforcement Learning An Introduction
-
The MIT Press, Cambridge, MA, USA
-
Sutton R.S., and Barto A.G. Reinforcement Learning An Introduction. Adaptive Computation and Machine Learning (1998), The MIT Press, Cambridge, MA, USA
-
(1998)
Adaptive Computation and Machine Learning
-
-
Sutton, R.S.1
Barto, A.G.2
-
55
-
-
33749242004
-
-
Springer Science+Business Media, Inc., New York, NY, USA
-
Wasserman L. All of Nonparametric Statistics. Springer Texts in Statistics (2006), Springer Science+Business Media, Inc., New York, NY, USA
-
(2006)
All of Nonparametric Statistics. Springer Texts in Statistics
-
-
Wasserman, L.1
-
56
-
-
0002295913
-
Gaussian processes for regression
-
Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), The MIT Press, Cambridge, MA, USA
-
Williams C.K.I., and Rasmussen C.E. Gaussian processes for regression. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Processing Systems, vol. 8 (1996), The MIT Press, Cambridge, MA, USA 598-604
-
(1996)
Advances in Neural Processing Systems, vol. 8
, pp. 598-604
-
-
Williams, C.K.I.1
Rasmussen, C.E.2
|