메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1901-1907

GP-UKF: Unscented Kalman Filters with Gaussian Process prediction and observation models

Author keywords

[No Author keywords available]

Indexed keywords

INTERNATIONAL CONFERENCES; OBSERVATION MODELS; TRACKING QUALITY;

EID: 51349131913     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IROS.2007.4399284     Document Type: Conference Paper
Times cited : (108)

References (16)
  • 4
    • 51349161638 scopus 로고    scopus 로고
    • A. Girard, C. Rasmussen, J. Quin̈onero Candela, and R. Murray-Smith. Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting. In Advances in Neural Information Processing Systems 15 (NIPS). 2005.
    • A. Girard, C. Rasmussen, J. Quin̈onero Candela, and R. Murray-Smith. Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting. In Advances in Neural Information Processing Systems 15 (NIPS). 2005.
  • 5
  • 8
    • 51349148379 scopus 로고    scopus 로고
    • N.D. Lawrence. http://www.dcs.shef.ac.uk/-neil/fgplvm/.
    • Lawrence, N.D.1
  • 13
    • 51349135431 scopus 로고    scopus 로고
    • Rao-Blackwellized particle filters for recognizing activities and spatial context from wearable sensors
    • Springer Tracts in Advanced Robotics STAR, Springer Verlag
    • A. Raj, A. Subramanya, D. Fox, and J. Bilmes. Rao-Blackwellized particle filters for recognizing activities and spatial context from wearable sensors. In Experimental Robotics: The 10th International Symposium, Springer Tracts in Advanced Robotics (STAR). Springer Verlag, 2006.
    • (2006) Experimental Robotics: The 10th International Symposium
    • Raj, A.1    Subramanya, A.2    Fox, D.3    Bilmes, J.4
  • 16


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.