메뉴 건너뛰기




Volumn 10, Issue 3, 2009, Pages 211-216

Natural computing methods in bioinformatics: A survey

Author keywords

Bioinformatics; Biological networks modeling; Microarray data analysis; Natural computing; Protein structure prediction

Indexed keywords

FUZZY NEURAL NETWORKS; FUZZY SETS; LEARNING ALGORITHMS; SURVEYS;

EID: 61749086580     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2008.12.002     Document Type: Article
Times cited : (29)

References (73)
  • 2
    • 0025318743 scopus 로고
    • The human genome project: past, present, and future
    • Watson J.D. The human genome project: past, present, and future. Science 248 (1990) 44-49
    • (1990) Science , vol.248 , pp. 44-49
    • Watson, J.D.1
  • 13
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S., Gelatt C.D., and Vecchi M.P. Optimization by simulated annealing. Science 220 (1983) 661-680
    • (1983) Science , vol.220 , pp. 661-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 15
    • 0033954256 scopus 로고    scopus 로고
    • The protein data bank
    • Berman H., et al. The protein data bank. Nucleic Acids Research 28 (2000) 235-242
    • (2000) Nucleic Acids Research , vol.28 , pp. 235-242
    • Berman, H.1
  • 17
    • 36749042541 scopus 로고    scopus 로고
    • Critical assessment of methods of protein structure prediction-Round VII
    • Moult J., et al. Critical assessment of methods of protein structure prediction-Round VII. Proteins 69 (2007) 3-9
    • (2007) Proteins , vol.69 , pp. 3-9
    • Moult, J.1
  • 18
    • 44949145113 scopus 로고    scopus 로고
    • Progress and challenges in protein structure prediction
    • Zhang Y. Progress and challenges in protein structure prediction. Current Opinion in Structural Biology 18 (2008) 342-348
    • (2008) Current Opinion in Structural Biology , vol.18 , pp. 342-348
    • Zhang, Y.1
  • 19
    • 0035812694 scopus 로고    scopus 로고
    • Protein structure prediction and structural genomics
    • Baker D., and Sali A. Protein structure prediction and structural genomics. Science 294 (2001) 93-96
    • (2001) Science , vol.294 , pp. 93-96
    • Baker, D.1    Sali, A.2
  • 20
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian N., and Sejnowski T.J. Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202 (1988) 865-884
    • (1988) Journal of Molecular Biology , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 21
    • 0024202930 scopus 로고
    • Protein secondary structure and homology by neural networks: the a-helices in rhodopsin
    • Bohr H., et al. Protein secondary structure and homology by neural networks: the a-helices in rhodopsin. FEBS Letters 241 (1988) 223
    • (1988) FEBS Letters , vol.241 , pp. 223
    • Bohr, H.1
  • 22
    • 0000268209 scopus 로고
    • Protein secondary structure prediction with a neural network
    • Holley L.H., and Karplus M. Protein secondary structure prediction with a neural network. PNAS 86 (1989) 152-156
    • (1989) PNAS , vol.86 , pp. 152-156
    • Holley, L.H.1    Karplus, M.2
  • 23
    • 0025334980 scopus 로고
    • Improvements in protein secondary structure prediction by an enhanced neural network
    • Kneller D.G., Cohen F.E., and Langridge R. Improvements in protein secondary structure prediction by an enhanced neural network. Journal of Molecular Biology 214 1 (1990) 171-182
    • (1990) Journal of Molecular Biology , vol.214 , Issue.1 , pp. 171-182
    • Kneller, D.G.1    Cohen, F.E.2    Langridge, R.3
  • 24
    • 0026682530 scopus 로고
    • Predicting protein secondary structure using neural net and statistical methods
    • Stolorz P., Lapedes A., and Xia Y. Predicting protein secondary structure using neural net and statistical methods. Journal of Molecular Biology 225 (1992) 363-377
    • (1992) Journal of Molecular Biology , vol.225 , pp. 363-377
    • Stolorz, P.1    Lapedes, A.2    Xia, Y.3
  • 25
    • 0027278815 scopus 로고
    • Prediction of protein secondary structures by a neural network
    • Sasagawa F., and Tajima K. Prediction of protein secondary structures by a neural network. Computer Applications in the Biosciences 9 (1993) 147-152
    • (1993) Computer Applications in the Biosciences , vol.9 , pp. 147-152
    • Sasagawa, F.1    Tajima, K.2
  • 26
    • 0027251103 scopus 로고
    • Predicting secondary structures of membrane proteins with neural networks
    • Fariselli P., Compiani M., and Casadio R. Predicting secondary structures of membrane proteins with neural networks. European Biophysics Journal 22 (1993) 41-51
    • (1993) European Biophysics Journal , vol.22 , pp. 41-51
    • Fariselli, P.1    Compiani, M.2    Casadio, R.3
  • 28
    • 0029984070 scopus 로고    scopus 로고
    • Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments
    • Riis S.K., and Krogh A. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. Journal of Computational Biology 3 (1996) 163-183
    • (1996) Journal of Computational Biology , vol.3 , pp. 163-183
    • Riis, S.K.1    Krogh, A.2
  • 29
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position- specific scoring matrices
    • Jones D. Protein secondary structure prediction based on position- specific scoring matrices. Journal of Molecular Biology 292 (1999) 195-202
    • (1999) Journal of Molecular Biology , vol.292 , pp. 195-202
    • Jones, D.1
  • 30
    • 0032438987 scopus 로고    scopus 로고
    • Hidden Markov models for detecting remote protein homologies
    • Karplus K., Barrett C., and Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 14 (1998) 846-856
    • (1998) Bioinformatics , vol.14 , pp. 846-856
    • Karplus, K.1    Barrett, C.2    Hughey, R.3
  • 31
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi P., et al. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15 (1999) 937-946
    • (1999) Bioinformatics , vol.15 , pp. 937-946
    • Baldi, P.1
  • 32
    • 17444397116 scopus 로고    scopus 로고
    • Porter: a new accurate server for protein secondary structure prediction
    • Pollastri G., and McLysaght A. Porter: a new accurate server for protein secondary structure prediction. Bioinformatics 21 (2005) 1719-1720
    • (2005) Bioinformatics , vol.21 , pp. 1719-1720
    • Pollastri, G.1    McLysaght, A.2
  • 33
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G., Przybylski D., Rost B., and Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47 (2002) 228-235
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 34
    • 26944482741 scopus 로고    scopus 로고
    • Learning protein secondary structure from sequential and relational data
    • Ceroni A., Frasconi P., and Pollastri G. Learning protein secondary structure from sequential and relational data. Neural Networks 18 (2005) 1029-1039
    • (2005) Neural Networks , vol.18 , pp. 1029-1039
    • Ceroni, A.1    Frasconi, P.2    Pollastri, G.3
  • 35
    • 0031556019 scopus 로고    scopus 로고
    • Protein folding simulations with genetic algorithms and a detailed molecular description
    • Pedersen J.T., and Moult J. Protein folding simulations with genetic algorithms and a detailed molecular description. Journal of Molecular Biology 269 (1997) 240-259
    • (1997) Journal of Molecular Biology , vol.269 , pp. 240-259
    • Pedersen, J.T.1    Moult, J.2
  • 36
    • 33747089280 scopus 로고    scopus 로고
    • A multi-objective evolutionary approach to the protein structure prediction problem
    • Cutello V., Narzisi G., and Nicosia G. A multi-objective evolutionary approach to the protein structure prediction problem. Journal of The Royal Society Interface 3 (2006) 139-151
    • (2006) Journal of The Royal Society Interface , vol.3 , pp. 139-151
    • Cutello, V.1    Narzisi, G.2    Nicosia, G.3
  • 38
    • 15344350283 scopus 로고    scopus 로고
    • A fuzzy sets based generalization of contact maps for the overlap of protein structures
    • Pelta D., et al. A fuzzy sets based generalization of contact maps for the overlap of protein structures. Journal of Fuzzy Sets and Systems 152 (2005) 103-123
    • (2005) Journal of Fuzzy Sets and Systems , vol.152 , pp. 103-123
    • Pelta, D.1
  • 39
    • 33745616114 scopus 로고    scopus 로고
    • A machine learning information retrieval approach to protein fold recognition
    • Cheng J., and Baldi P. A machine learning information retrieval approach to protein fold recognition. Bioinformatics 22 (2006) 1456-1463
    • (2006) Bioinformatics , vol.22 , pp. 1456-1463
    • Cheng, J.1    Baldi, P.2
  • 40
    • 0025155981 scopus 로고
    • A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks
    • Bohr H., et al. A novel approach to prediction of the 3-dimensional structures of protein backbones by neural networks. FEBS Letters 261 (1990) 43-46
    • (1990) FEBS Letters , vol.261 , pp. 43-46
    • Bohr, H.1
  • 41
    • 0029040771 scopus 로고
    • Neural network system for the evaluation of side-chain packing in protein structures
    • Milik M., Kolinski A., and Skolnick J. Neural network system for the evaluation of side-chain packing in protein structures. Protein Engineering 8 (1995) 225-236
    • (1995) Protein Engineering , vol.8 , pp. 225-236
    • Milik, M.1    Kolinski, A.2    Skolnick, J.3
  • 42
    • 0031585984 scopus 로고    scopus 로고
    • Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
    • Simons K.T., Kooperberg C., Huang E., and Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of Molecular Biology 268 (1997) 209-225
    • (1997) Journal of Molecular Biology , vol.268 , pp. 209-225
    • Simons, K.T.1    Kooperberg, C.2    Huang, E.3    Baker, D.4
  • 44
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung K.Y., Haynor D.R., and Ruzzo W.L. Validating clustering for gene expression data. Bioinformatics 17 (2001) 309-318
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 46
    • 17944394324 scopus 로고    scopus 로고
    • Fuzzy c-means method for clustering microarray data
    • Dembele D., and Kastner P. Fuzzy c-means method for clustering microarray data. Bioinformatics 19 (2003) 973-980
    • (2003) Bioinformatics , vol.19 , pp. 973-980
    • Dembele, D.1    Kastner, P.2
  • 47
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering
    • Gasch A.P., and Eisen M.B. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3 (2002) 1-22
    • (2002) Genome Biology , vol.3 , pp. 1-22
    • Gasch, A.P.1    Eisen, M.B.2
  • 48
    • 0026408256 scopus 로고
    • Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system
    • Carpenter G.A., Grossberg S., and Rosen D.B. Fuzzy ART: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 4 (1991) 759-771
    • (1991) Neural Networks , vol.4 , pp. 759-771
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.B.3
  • 49
    • 0036678783 scopus 로고    scopus 로고
    • Analysis of expression profile using fuzzy adaptive resonance theory
    • Tomida S., Hanai T., Honda H., and Kobayashi T. Analysis of expression profile using fuzzy adaptive resonance theory. Bioinformatics 18 (2002) 1073-1083
    • (2002) Bioinformatics , vol.18 , pp. 1073-1083
    • Tomida, S.1    Hanai, T.2    Honda, H.3    Kobayashi, T.4
  • 52
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • De Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 9 (2002) 67-103
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • De Jong, H.1
  • 53
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: from co-expression clustering to reverse engineering
    • D'haeseleer P., Liang S., and Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16 (2000) 707-726
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'haeseleer, P.1    Liang, S.2    Somogyi, R.3
  • 54
    • 0032077377 scopus 로고    scopus 로고
    • From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli
    • Thieffry D., Huerta A.M., Pérez-Rueda E., and Collado-Vides J. From specific gene regulation to genomic networks: a global analysis of transcriptional regulation in Escherichia coli. BioEssays 20 (1998) 433-440
    • (1998) BioEssays , vol.20 , pp. 433-440
    • Thieffry, D.1    Huerta, A.M.2    Pérez-Rueda, E.3    Collado-Vides, J.4
  • 55
    • 0035082045 scopus 로고    scopus 로고
    • Neural network model of gene expression
    • Vohradsky J. Neural network model of gene expression. FASEB Journal 15 (2001) 846-854
    • (2001) FASEB Journal , vol.15 , pp. 846-854
    • Vohradsky, J.1
  • 56
    • 0042627711 scopus 로고    scopus 로고
    • Clustering gene expression data using adaptive double self-organizing map
    • Ressom H., Wang D., and Natarajan P. Clustering gene expression data using adaptive double self-organizing map. Physiological Genomics 14 (2003) 35-46
    • (2003) Physiological Genomics , vol.14 , pp. 35-46
    • Ressom, H.1    Wang, D.2    Natarajan, P.3
  • 57
    • 0034729586 scopus 로고    scopus 로고
    • A fuzzy logic approach to analyzing gene expression data
    • Woolf P.J., and Wang Y. A fuzzy logic approach to analyzing gene expression data. Physiological Genomics 3 (2000) 9-15
    • (2000) Physiological Genomics , vol.3 , pp. 9-15
    • Woolf, P.J.1    Wang, Y.2
  • 58
    • 0037505696 scopus 로고    scopus 로고
    • Increasing the efficiency of fuzzy logic-based gene expression data analysis
    • Ressom H., Reynolds R., and Varghese R.S. Increasing the efficiency of fuzzy logic-based gene expression data analysis. Physiological Genomics 13 (2003) 107-117
    • (2003) Physiological Genomics , vol.13 , pp. 107-117
    • Ressom, H.1    Reynolds, R.2    Varghese, R.S.3
  • 59
    • 13244298219 scopus 로고    scopus 로고
    • Linear fuzzy gene network models obtained from microarray data by exhaustive search
    • Sokhansanj B.A., Fitch J.P., Quong J.N., and Quong A.A. Linear fuzzy gene network models obtained from microarray data by exhaustive search. BMC Bioinformatics 5 (2004) 108
    • (2004) BMC Bioinformatics , vol.5 , pp. 108
    • Sokhansanj, B.A.1    Fitch, J.P.2    Quong, J.N.3    Quong, A.A.4
  • 60
    • 0036749274 scopus 로고    scopus 로고
    • Inference of a gene regulatory network by means of interactive evolutionary computing
    • Iba H., and Mimura A. Inference of a gene regulatory network by means of interactive evolutionary computing. Information Science 145 (2002) 225-236
    • (2002) Information Science , vol.145 , pp. 225-236
    • Iba, H.1    Mimura, A.2
  • 63
    • 61749087284 scopus 로고    scopus 로고
    • Gene interaction - an evolutionary biclustering approach
    • Mitra S., Das R., Banka H., and Mukhopadhyay S. Gene interaction - an evolutionary biclustering approach. Information Fusion 39 (2008) 2464-2477
    • (2008) Information Fusion , vol.39 , pp. 2464-2477
    • Mitra, S.1    Das, R.2    Banka, H.3    Mukhopadhyay, S.4
  • 64
    • 33748417841 scopus 로고    scopus 로고
    • Multi-objective evolutionary biclustering of gene expression data
    • Mitra S., and Banka H. Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39 (2006) 2464-2477
    • (2006) Pattern Recognition , vol.39 , pp. 2464-2477
    • Mitra, S.1    Banka, H.2
  • 68
    • 0042863923 scopus 로고    scopus 로고
    • Analysis of gene expression data using self-organizing maps
    • Törönen P., Kolehmainen M., Wong G., and Castrén E. Analysis of gene expression data using self-organizing maps. FEBS Letters 451 (1999) 142-146
    • (1999) FEBS Letters , vol.451 , pp. 142-146
    • Törönen, P.1    Kolehmainen, M.2    Wong, G.3    Castrén, E.4
  • 69
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero J., Valencia A., and Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics 17 (2001) 126-136
    • (2001) Bioinformatics , vol.17 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 70
    • 0141686299 scopus 로고    scopus 로고
    • Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features
    • Cho S.B., and Ryu J. Classifying gene expression data of cancer using classifier ensemble with mutually exclusive features. Proceedings of the IEEE 90 (2002) 1744-1753
    • (2002) Proceedings of the IEEE , vol.90 , pp. 1744-1753
    • Cho, S.B.1    Ryu, J.2
  • 72
    • 0042168791 scopus 로고    scopus 로고
    • Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue
    • Futschik M.E., Reeve A., and Kasabov N. Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue. Artificial Intelligence in Medicine 28 (2003) 165-189
    • (2003) Artificial Intelligence in Medicine , vol.28 , pp. 165-189
    • Futschik, M.E.1    Reeve, A.2    Kasabov, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.