메뉴 건너뛰기




Volumn 47, Issue 1, 2008, Pages 97-108

Gene expression modeling through positive boolean functions

Author keywords

DNA microarrays; Gene expression data clustering; Gene expression modeling; Gene selection; Positive Boolean functions

Indexed keywords

BOOLEAN FUNCTIONS; COMPUTER SIMULATION; DNA; MATHEMATICAL MODELS; MEDICAL PROBLEMS;

EID: 36248971792     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2007.03.010     Document Type: Article
Times cited : (3)

References (26)
  • 5
    • 0037276175 scopus 로고    scopus 로고
    • Statistical tests for differential expression in cDNA microarray experiments
    • Cui X., and Churchill G. Statistical tests for differential expression in cDNA microarray experiments. Genome Biology 4 4 (2003)
    • (2003) Genome Biology , vol.4 , Issue.4
    • Cui, X.1    Churchill, G.2
  • 6
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • Dudoit S., and Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 19 9 (2003) 1090-1099
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 8
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen M.B., Spellman P.T., Brown P.O., and Botstei D. Cluster analysis and display of genome-wide expression patterns. PNAS 95 25 (1998) 14863-14868
    • (1998) PNAS , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstei, D.4
  • 9
    • 0037057374 scopus 로고    scopus 로고
    • Exploring the conditional regulation of yeast gene expression through fuzzy k-means clustering
    • Gasch P., and Eisen M. Exploring the conditional regulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3 11 (2002)
    • (2002) Genome Biology , vol.3 , Issue.11
    • Gasch, P.1    Eisen, M.2
  • 10
    • 0033569406 scopus 로고    scopus 로고
    • Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring
    • Golub T.R., et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • Guyon I., Weston J., Barnhill S., and Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning 46 (2002) 389-422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 12
    • 4544339167 scopus 로고    scopus 로고
    • Defining transcription modules using large-scale gene expression data
    • Ihmels J., Bergmann S., and Barkai N. Defining transcription modules using large-scale gene expression data. Bioinformatics 20 13 (2004) 1993-2003
    • (2004) Bioinformatics , vol.20 , Issue.13 , pp. 1993-2003
    • Ihmels, J.1    Bergmann, S.2    Barkai, N.3
  • 13
    • 21044446187 scopus 로고    scopus 로고
    • Finding disease specific alterations in the co-expression of genes
    • Kotska D., and Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics 20 (2004) i194-i199
    • (2004) Bioinformatics , vol.20
    • Kotska, D.1    Spang, R.2
  • 14
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li T., Zhang C., and Ogihara M. A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20 (2004) 2429-2437
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 15
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Lu Y., and Han J. Cancer classification using gene expression data. Information Systems 28 (2003) 243-268
    • (2003) Information Systems , vol.28 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 16
    • 12244298864 scopus 로고    scopus 로고
    • A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer
    • Martoglio A., Miskin J., Smith S., and MacKay D. A decomposition model to track gene expression signatures: preview on observer-independent classification of ovarian cancer. Bioinformatics 18 12 (2002) 1617-1624
    • (2002) Bioinformatics , vol.18 , Issue.12 , pp. 1617-1624
    • Martoglio, A.1    Miskin, J.2    Smith, S.3    MacKay, D.4
  • 17
  • 18
    • 36248949266 scopus 로고    scopus 로고
    • M. Muselli, Gene selection through Switched Neural Networks, in: NETTAB-2003, Workshop on Bioinformatics for Microarrays, Bologna, Italy, 2003.
  • 19
    • 5644251671 scopus 로고    scopus 로고
    • Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death
    • Onken M.D., Worley L.A., Ehlers J.P., and Harbour J.W. Gene expression profiling in uveal melanoma reveals two molecular classes and predicts metastatic death. Cancer Research 64 (2004) 7205-7209
    • (2004) Cancer Research , vol.64 , pp. 7205-7209
    • Onken, M.D.1    Worley, L.A.2    Ehlers, J.P.3    Harbour, J.W.4
  • 20
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J. Computational analysis of microarray data. Nature Reviews Genetics 2 6 (2001) 418-427
    • (2001) Nature Reviews Genetics , vol.2 , Issue.6 , pp. 418-427
    • Quackenbush, J.1
  • 21
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy S., Ross K., Lander E., and Golub T. A molecular signature of metastasis in primary solid tumors. Nature Genetics 33 (2003) 49-54
    • (2003) Nature Genetics , vol.33 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.2    Lander, E.3    Golub, T.4
  • 22
    • 0027678679 scopus 로고
    • Extracting Refined Rules from Knowledge-Based Neural Networks
    • Towell G., and Shavlik J. Extracting Refined Rules from Knowledge-Based Neural Networks. Machine Learning 131 (1993) 71-101
    • (1993) Machine Learning , vol.131 , pp. 71-101
    • Towell, G.1    Shavlik, J.2
  • 23
    • 0742271707 scopus 로고    scopus 로고
    • Cancer recognition with bagged ensembles of Support Vector Machines
    • Valentini G., Muselli M., and Ruffino F. Cancer recognition with bagged ensembles of Support Vector Machines. Neurocomputing 56C (2004) 461-466
    • (2004) Neurocomputing , vol.56 C , pp. 461-466
    • Valentini, G.1    Muselli, M.2    Ruffino, F.3
  • 26
    • 1442304609 scopus 로고    scopus 로고
    • Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homoprotein Six-1 as key metastatic regulators
    • Yu Y., Khan J., Khanna C., Helman L., Meltzer P., and Merlino G. Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homoprotein Six-1 as key metastatic regulators. Nature Medicine 10 2 (2004) 175-181
    • (2004) Nature Medicine , vol.10 , Issue.2 , pp. 175-181
    • Yu, Y.1    Khan, J.2    Khanna, C.3    Helman, L.4    Meltzer, P.5    Merlino, G.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.