메뉴 건너뛰기




Volumn 10, Issue 2, 1996, Pages 149-168

Time series forecasting by combining RBF networks, certainty factors, and the Box-Jenkins model

Author keywords

Box Jenkins; Certainty factors; Forecasting; RBF neural networks

Indexed keywords

FORECASTING; MATHEMATICAL MODELS; RELIABILITY; TIME SERIES ANALYSIS;

EID: 0030110883     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/0925-2312(95)00021-6     Document Type: Article
Times cited : (128)

References (20)
  • 3
    • 0000588294 scopus 로고
    • Improving the generalization properties of radial basis function neural networks
    • C. Bishop, Improving the generalization properties of radial basis function neural networks, Neural Computat. 3 (1991) 579-588.
    • (1991) Neural Computat. , vol.3 , pp. 579-588
    • Bishop, C.1
  • 4
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D.S. Broomhead and D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Syst. 2 (1988) 321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 6
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • March
    • S. Chen, C.F.N. Cowan and P.M. Grant, Orthogonal least squares learning algorithm for radial basis function network, IEEE Trans Neural Networks (2) (March 1991) 302-309.
    • (1991) IEEE Trans Neural Networks , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 7
    • 84950967431 scopus 로고
    • Non-linear systems identification using radial basis functions
    • S. Chen, S.A. Billings, C.F.N. Cowan and P.M. Grant, Non-linear systems identification using radial basis functions, Int. J. Systems Sci. 21 (12) (1990) 2513-2539.
    • (1990) Int. J. Systems Sci. , vol.21 , Issue.12 , pp. 2513-2539
    • Chen, S.1    Billings, S.A.2    Cowan, C.F.N.3    Grant, P.M.4
  • 9
    • 0011180615 scopus 로고
    • Sequential adaption of radial basis function neural networks and its application to time-series prediction
    • R.P. Lippman, J.E. Moody and D.S. Tourefzky, eds. Morgan Kaufmann
    • V. Kadirkamanathan, M. Niranjan and F. Fallside, Sequential adaption of radial basis function neural networks and its application to time-series prediction, Neural Information Processing Systems 3, R.P. Lippman, J.E. Moody and D.S. Tourefzky, eds. (Morgan Kaufmann, 1991).
    • (1991) Neural Information Processing Systems , vol.3
    • Kadirkamanathan, V.1    Niranjan, M.2    Fallside, F.3
  • 10
    • 0003645482 scopus 로고
    • Non-linear signal processing using neural networks: Prediction and system modelling
    • Los Alamos National Laboratory; Los Alamos, New Mexico 87545
    • A.S. Lapedes and R. Farber, Non-linear signal processing using neural networks: Prediction and system modelling, Technical report, Los Alamos National Laboratory; Los Alamos, New Mexico 87545, 1987.
    • (1987) Technical Report
    • Lapedes, A.S.1    Farber, R.2
  • 11
    • 0000139964 scopus 로고
    • Handwritten digit recognition using K nearest-neighbor, radial-basis function, and back-propagation neural networks
    • Y. Lee, Handwritten digit recognition using K nearest-neighbor, radial-basis function, and back-propagation neural networks, Neural Computat. 3 (3) (1991) 440-449.
    • (1991) Neural Computat. , vol.3 , Issue.3 , pp. 440-449
    • Lee, Y.1
  • 12
    • 0026899193 scopus 로고
    • Using radial basis functions to approximate a function and its error bounds
    • July
    • J.-A. Leonard, M.A. Kramer and L.-H. Unger, Using radial basis functions to approximate a function and its error bounds, IEEE Trans. Neural Networks (4) (July 1992) 624-627.
    • (1992) IEEE Trans. Neural Networks , Issue.4 , pp. 624-627
    • Leonard, J.-A.1    Kramer, M.A.2    Unger, L.-H.3
  • 13
    • 0026923530 scopus 로고
    • A neural network architecture that computes its own reliability
    • J.A. Leonard, M.-A. Kramer and L.-H. Unger, A neural network architecture that computes its own reliability, Comput. Chem. Eng., 16 (9) (1992) 819-835.
    • (1992) Comput. Chem. Eng. , vol.16 , Issue.9 , pp. 819-835
    • Leonard, J.A.1    Kramer, M.-A.2    Unger, L.-H.3
  • 15
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J, Moody and C.J. Darken, Fast learning in networks of locally-tuned processing units, Neural Computat. 1 (1989) 281-294.
    • (1989) Neural Computat. , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 18
    • 0004089297 scopus 로고
    • Threshold models in non-linear time series analysis
    • Springer-Verlag, New York, NY
    • H. Tong, Threshold models in non-linear time series analysis, Lecture Notes in Statistics (Springer-Verlag, New York, NY, 1983).
    • (1983) Lecture Notes in Statistics
    • Tong, H.1
  • 20
    • 0026631971 scopus 로고
    • How gaussian radial basis functions work
    • Y.-f. Wong, How gaussian radial basis functions work, Proc. Int. Joint Conf. Neural Networks, Vol. 2 (July 1991) 133-138.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.2 , Issue.JULY , pp. 133-138
    • Wong, Y.-F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.