메뉴 건너뛰기




Volumn 54, Issue 1-3, 2009, Pages 183-203

A scalable framework for segmenting magnetic resonance images

Author keywords

Automatic; Clustering; FCM; Magnetic resonance imaging; Scalable; Segmentation

Indexed keywords

AUTOMATIC; CLUSTERING; FCM; SCALABLE; SEGMENTATION;

EID: 58149263279     PISSN: 19398018     EISSN: 19398115     Source Type: Journal    
DOI: 10.1007/s11265-008-0243-1     Document Type: Article
Times cited : (72)

References (65)
  • 1
    • 84864155902 scopus 로고    scopus 로고
    • FMRIB Software Library (2007). FSL package.
    • FMRIB Software Library (2007). FSL package. http://www.fmrib.ox.ac.uk/ fsl/.
  • 2
    • 84864154613 scopus 로고    scopus 로고
    • SPM (2008). SPM package.
    • SPM (2008). SPM package. http://www.fil.ion.ucl.ac.uk/spm/.
  • 8
    • 20444478727 scopus 로고    scopus 로고
    • Adaptive model initialization and deformation for automatic segmentation of t1-weighted brain MRI data
    • 6. June
    • Z. Wu K. D. Paulsen J. M. Sullivan Jr. 2005 Adaptive model initialization and deformation for automatic segmentation of t1-weighted brain MRI data IEEE Transactions on Biomedical Engineering 52 6 1128 1131 June
    • (2005) IEEE Transactions on Biomedical Engineering , vol.52 , pp. 1128-1131
    • Wu, Z.1    Paulsen K., D.2    Sullivan Jr. J., M.3
  • 13
    • 33748123943 scopus 로고    scopus 로고
    • Constrained Gaussian mixture model framework for automatic segmentation of MR brain images
    • 9
    • H. Greenspan A. Ruf J. Goldberger 2006 Constrained Gaussian mixture model framework for automatic segmentation of MR brain images IEEE Transactions on Medical Imaging 25 9 1233 1245
    • (2006) IEEE Transactions on Medical Imaging , vol.25 , pp. 1233-1245
    • Greenspan, H.1    Ruf, A.2    Goldberger, J.3
  • 15
    • 0033201364 scopus 로고    scopus 로고
    • Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: Part I, methodology and validation on normal subjects
    • 10. October
    • B. M. Dawant S. L. Hartmann J.-P. Thirion F. Maes D. Vandermeulen P. Demaerel 1999 Automatic 3-D segmentation of internal structures of the head in MR images using a combination of similarity and free-form transformations: Part I, methodology and validation on normal subjects IEEE Transactions on Medical Imaging 18 10 909 916 October
    • (1999) IEEE Transactions on Medical Imaging , vol.18 , pp. 909-916
    • Dawant B., M.1    Hartmann S., L.2    Thirion, J.-P.3    Maes, F.4    Vandermeulen, D.5    Demaerel, P.6
  • 17
    • 0034745001 scopus 로고    scopus 로고
    • Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm
    • 1
    • Y. Zhang M. Brady S. Smith 2001 Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm IEEE Transactions on Medical Imaging 20 1 45 57
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , pp. 45-57
    • Zhang, Y.1    Brady, M.2    Smith, S.3
  • 18
    • 0030779782 scopus 로고    scopus 로고
    • MRI and PET coregistration-a cross validation of statistical parametric mapping and automated image registration
    • S. J. Kiebel J. Ashburner J.-B. Poline K. J. Friston 1997 MRI and PET coregistration-a cross validation of statistical parametric mapping and automated image registration NeuroImage 5 271 279
    • (1997) NeuroImage , vol.5 , pp. 271-279
    • Kiebel S., J.1    Ashburner, J.2    Poline, J.-B.3    Friston K., J.4
  • 24
    • 35148822589 scopus 로고    scopus 로고
    • Efficient fuzzy clustering of multi-spectral images
    • Altman, D. (1999). Efficient fuzzy clustering of multi-spectral images. In IEEE FUZZY.
    • (1999) IEEE FUZZY
    • Altman, D.1
  • 26
  • 28
    • 0038537359 scopus 로고    scopus 로고
    • Speeding up fuzzy clustering with neural network techniques
    • C. Borgelt R. Kruse 2003 Speeding up fuzzy clustering with neural network techniques Fuzzy Systems 2 852 856
    • (2003) Fuzzy Systems , vol.2 , pp. 852-856
    • Borgelt, C.1    Kruse, R.2
  • 35
    • 4344560363 scopus 로고    scopus 로고
    • Clustering very large databases using EM mixture models
    • P. S. Bradley U. M. Fayyad C. A. Reina 2000 Clustering very large databases using EM mixture models ICPR 2 76 80
    • (2000) ICPR , vol.2 , pp. 76-80
    • Bradley P., S.1    Fayyad U., M.2    Reina C., A.3
  • 36
    • 34548590808 scopus 로고    scopus 로고
    • Gradual model generator for single-pass clustering
    • Karkkainen, I., & Franti, P. (2005). Gradual model generator for single-pass clustering. ICDM, 681-684.
    • (2005) ICDM , pp. 681-684
    • Karkkainen, I.1    Franti, P.2
  • 38
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2004). A framework for projected clustering of high dimensional data streams. In Proc. of VLDB.
    • (2004) Proc. of VLDB
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 39
    • 0345359157 scopus 로고    scopus 로고
    • Dynamic clustering of evolving streams with a single pass
    • Yang, J. (2003). Dynamic clustering of evolving streams with a single pass. In Proc. of ICDE.
    • (2003) Proc. of ICDE
    • Yang, J.1
  • 40
    • 57949115516 scopus 로고    scopus 로고
    • Tecno-streams: Tracking evolving clusters in noisy data streams with a scalable immune system learning model
    • Nasraoui, O., Cardona, C., Rojas, C., & Gonzlez, F. (2003). Tecno-streams: Tracking evolving clusters in noisy data streams with a scalable immune system learning model. In Proc. of ICDM (pp. 235-242).
    • (2003) Proc. of ICDM , pp. 235-242
    • Nasraoui, O.1    Cardona, C.2    Rojas, C.3    Gonzlez, F.4
  • 41
    • 34548620153 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • Cao, F., Estery, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving data stream with noise. SDM.
    • (2006) SDM
    • Cao, F.1    Estery, M.2    Qian, W.3    Zhou, A.4
  • 48
    • 0033853121 scopus 로고    scopus 로고
    • Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging
    • 4
    • M. S. Cohen R. D. DuBois M. M. Zeineh 2000 Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging Human Brain Mapping 10 4 204 211
    • (2000) Human Brain Mapping , vol.10 , pp. 204-211
    • Cohen M., S.1    DuBois R., D.2    Zeineh M., M.3
  • 49
    • 0036828879 scopus 로고    scopus 로고
    • Fast robust automated brain extraction
    • 3. November
    • S. M. Smith 2002 Fast robust automated brain extraction Human Brain Mapping 17 3 143 155 November
    • (2002) Human Brain Mapping , vol.17 , pp. 143-155
    • Smith S., M.1
  • 51
    • 18144389073 scopus 로고    scopus 로고
    • Classification of high dimensional, multi-spectral data sets using computational mechanics
    • K. Young Y. Chen J. Kornak G. B. Matson N. Schuff 2005 Classification of high dimensional, multi-spectral data sets using computational mechanics Physical Review Letters 94 9870
    • (2005) Physical Review Letters , vol.94 , pp. 9870
    • Young, K.1    Chen, Y.2    Kornak, J.3    Matson G., B.4    Schuff, N.5
  • 53
    • 84864154612 scopus 로고    scopus 로고
    • MIDAS (2008). MIDAS Project Website.
    • MIDAS (2008). MIDAS Project Website. http://midas.med.miami.edu/.
  • 54
    • 35148854597 scopus 로고    scopus 로고
    • Creating streaming iterative soft clustering algorithms
    • Hore, P., Hall, L. O., & Goldgof, D. B. (2007). Creating streaming iterative soft clustering algorithms. NAFIPS.
    • (2007) NAFIPS
    • Hore, P.1    Hall, L.O.2    Goldgof, D.B.3
  • 55
    • 40949083521 scopus 로고    scopus 로고
    • A fuzzy C means variant for clustering evolving data streams
    • Hore, P., Hall, L. O., & Goldgof, D. B. (2007). A fuzzy C means variant for clustering evolving data streams. IEEE-SMC.
    • (2007) IEEE-SMC
    • Hore, P.1    Hall, L.O.2    Goldgof, D.B.3
  • 61
    • 0027275316 scopus 로고
    • Review of MR image segmentation techniques using pattern recognition
    • J. C. Bezdek L. O. Hall L. P. Clarke 1993 Review of MR image segmentation techniques using pattern recognition Medical Physics 20 1033 1048
    • (1993) Medical Physics , vol.20 , pp. 1033-1048
    • Bezdek J., C.1    Hall L., O.2    Clarke L., P.3
  • 62
    • 0032843554 scopus 로고    scopus 로고
    • An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities
    • 1
    • D. L. Pham J. L. Prince 1999 An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities Pattern Recognition Letters 20 1 57 68
    • (1999) Pattern Recognition Letters , vol.20 , pp. 57-68
    • Pham D., L.1    Prince J., L.2
  • 63
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • 3
    • M. N. Ahmed S. M. Yamany 2002 A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data IEEE Transactions on Medical Imaging 21 3 193 199
    • (2002) IEEE Transactions on Medical Imaging , vol.21 , pp. 193-199
    • Ahmed M., N.1    Yamany S., M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.